flat panel displays tcad
play

Flat Panel Displays TCAD/ Circuit Design Silvaco Products - PowerPoint PPT Presentation

Flat Panel Displays TCAD/ Circuit Design Silvaco Products Connecting TCAD to Tapeout - 2 - Flat Panel Displays TCAD/Circuit Design FPD Design & Fabrication Specification EDA ECAD Design house Verification System Design


  1. Flat Panel Displays TCAD/ Circuit Design

  2. Silvaco Products – Connecting TCAD to Tapeout - 2 - Flat Panel Displays TCAD/Circuit Design

  3. FPD Design & Fabrication Specification EDA ECAD Design house Verification System Design Verification Netlist Extraction SPICE Circuit Design (Gateway) SPICE(SmartSpice) Layout Extraction (HIPEX) Characterization UTMOST Front-End Analysis : Parameter Extraction Timing Layout Design (Expert) Power I-V, C-V Noise Back-End Reliability Manufacturing VWF Mask Characterization Process Simulation Recipe FPD EXACT Fab CLEVER LPE I-V STELLAR Calibration DRC C-V TCAD Process Simulation TFT Process/Device ATHENA Verification Device Simulation ATLAS I-V, C-V - 3 - Flat Panel Displays TCAD/Circuit Design

  4. Contents  Silvaco Solution for FPD applications  ATHENA – Process Simulation  ATHENA modules  ATLAS – 2D/3D TFT Device Simulation  Pisces/TFT  a-Si/poly-Si TFT device models & simulation examples  MixedMode – TFT device + Spice circuit  OTFT/OLED – Organic Devices Simulation  Clever - 3D Field Solver for Parasitic RC Extraction  AMLCD Pixel RC Extraction: Spice netlist extraction  LC Modeling: Verilog-A  UTMOST – Spice Parameters Extraction & Modeling  SmartSpice - Analog Circuit Simulator - 4 - Flat Panel Displays TCAD/Circuit Design

  5. Silvaco Solution for FPD Applications LCD TFT a-Si TFT-LCD: low price, improved performance Low temperature Poly-Si TFT-LCD : System On Panel CG Silicon TFT-LCD : LSI + LCD Large Scale, micro scale → TFT New Age Large circuit, multi-layer interconnection < Silvaco Solution > TFT/Organic Device : ATHENA/ATLAS Organic EL Display Interconnect Parasitic RC : CLEVER Circuit : SmartSpice64 Stability & Reliability, Organic EL material - 5 - Flat Panel Displays TCAD/Circuit Design

  6. Silvaco Solution for FPD Applications - 6 - Flat Panel Displays TCAD/Circuit Design

  7. ATHENA – Process Simulation  SSuprem4 Models  Ion Doping(Implantation)  SVDP(Sims Verified Dual Pearson)  Diffusion  Dopant&Defects Fully coupled Diffusion Model  Polysilicon Diffusion Model in Grain/Grain Boundary  PLS – New Advanced Diffusion Model in Silicon  Etching/Deposition – Conformal Geometry  Silicide  MC Implant – Monte Carlo Ion Implant  Elite  Advanced Etching/Deposition – Complicated Topography  Polymer Redeposition – Plasma Etch  Optolith – Optical Lithography Simulator - 7 - Flat Panel Displays TCAD/Circuit Design

  8. TFT-LCD Simulation Pixel Structure and TFT Device for Simulation - 8 - Flat Panel Displays TCAD/Circuit Design

  9. TFT Process Simulation Using SSuprem4 - 9 - Flat Panel Displays TCAD/Circuit Design

  10. TFT Process Simulation Using SSUPREM4: TFT Structure Generation - 10 - Flat Panel Displays TCAD/Circuit Design

  11. ATLAS – 2D/3D TFT Devices Simulation  Pisces/TFT  a-Si/poly-Si TFT device models & simulation examples  MixedMode – TFT device + Spice circuit  OTFT/OLED – Organic Devices Simulation - 11 - Flat Panel Displays TCAD/Circuit Design

  12. ATLAS – 2D/3D TFT Devices Simulation  Pisces/TFT  Drift-Diffusion model – Poisson + Current Continuity Eqs. Generation/ Recombination Trapped Charge Mobility - 12 - Flat Panel Displays TCAD/Circuit Design

  13. ATLAS – 2D/3D TFT Devices Simulation  TFT – Definition of traps(defects) distribution within bandgap  Discrete & continuous defects - 13 - Flat Panel Displays TCAD/Circuit Design

  14. ATLAS – 2D/3D TFT Devices Simulation  Low temperature poly: DOS Density of states distribution by FE(Field Effect) method Donor like Acceptor like tail states tail states Ec Ev Ef Acceptor like Donor like Gaussian states Gaussian states user-defined form - 14 - Flat Panel Displays TCAD/Circuit Design

  15. ATLAS – 2D/3D TFT Device Simulation  User-defined DOS C-Function - 15 - Flat Panel Displays TCAD/Circuit Design

  16. ATLAS – 2D/3D TFT Device Simulation  TFT – Grain boundary defects effects - 16 - Flat Panel Displays TCAD/Circuit Design

  17. ATLAS – 2D/3D TFT Device Simulation  TFT’s leakage current simulation  trap-assisted tunneling with coulombic well  band-to-band tunneling - 17 - Flat Panel Displays TCAD/Circuit Design

  18. ATLAS – 2D/3D TFT Device Simulation  Mobility Models Low field mobility High field mobility – velocity saturation - 18 - Flat Panel Displays TCAD/Circuit Design

  19. a-Si TFT Simulation: ATHENA intdefect defects intdefect - 19 - Flat Panel Displays TCAD/Circuit Design

  20. a-Si TFT Simulation: Transfer Curve - 20 - Flat Panel Displays TCAD/Circuit Design

  21. ATLAS – 2D/3D TFT Device Simulation  a-Si TFT Device Simulation Example Back-light leakage current (Photo-generated current by Luminous ray-tracing) - 21 - Flat Panel Displays TCAD/Circuit Design

  22. ATLAS – 2D/3D TFT Device Simulation  poly-Si TFT Device Simulation Example - 22 - Flat Panel Displays TCAD/Circuit Design

  23. ATLAS – 2D/3D TFT Device Simulation  Lattice Temperature Distribution & IDVD RH(W/K) - 23 - Flat Panel Displays TCAD/Circuit Design

  24. ATLAS – 2D/3D TFT Device Simulation: TFT-LCD Pixel Simulation  Two approach to circuit simulation - 24 - Flat Panel Displays TCAD/Circuit Design

  25. ATLAS – 2D/3D TFT Device Simulation: TFT-LCD Pixel Simulation Typical Pixel Charging and Holding tf = 1/# sec v g v d v com Driving a pixel and effect of the parasitic capacitance - 25 - Flat Panel Displays TCAD/Circuit Design

  26. ATLAS – 2D/3D TFT Device Simulation: TFT-LCD Pixel Simulation TN - 26 - Flat Panel Displays TCAD/Circuit Design

  27. ATLAS – 2D/3D TFT Device Simulation: TFT-LCD Pixel Simulation User-defined c-function of C lc - 27 - Flat Panel Displays TCAD/Circuit Design

  28. ATLAS – 2D/3D TFT Device Simulation: TFT-LCD Pixel Simulation – C-Interpreter Function for LC cap # include <math.h> if(v > vc) #include <stdio.h> eps = epl + theta*gamma*exp(Dtime)*sqrt(v/vc - 1.0); double my_lc_rc(double v, double temp, double ktq, double time, else if( v <= vc) double *curr, double *didv, double *cap, double *charge) eps =epl; { double eps,e0; clc= e0*eps*L*W*1e-6/D; /* F */ double epl,clc; double theta,gamma; *curr=v/10e6; double Dtime; *didv=1/10e6; double vc; *cap=clc; double L,W,D; *charge=*cap*v; L=152; /* W=148; printf("clc = %e(F)\n", clc); Dtime=100e-3; printf("charge = %e\n", *charge); theta=51.0; /* sec */ */ gamma=51.2e-3; /* sec */ epl=3.1; return(0); vc=1.887; } D=10.02; e0 = 8.854e-12; - 28 - Flat Panel Displays TCAD/Circuit Design

  29. ATLAS – 2D/3D TFT Device Simulation: TFT-LCD Pixel Simulation - 29 - Flat Panel Displays TCAD/Circuit Design

  30. ATLAS – 2D/3D TFT Device Simulation: TFT-LCD Pixel Simulation - 30 - Flat Panel Displays TCAD/Circuit Design

  31. ATLAS – 2D/3D TFT Device Simulation: TFT-LCD Pixel Simulation - 31 - Flat Panel Displays TCAD/Circuit Design

  32. ATLAS – 2D/3D TFT Device Simulation: TFT-LCD Pixel Simulation LC cap - 32 - Flat Panel Displays TCAD/Circuit Design

  33. ATLAS – 2D/3D TFT Device Simulation: Backlight Effects Using MixedMode  MixedMode – TFT device + Spice circuit  Backlight Effect light ,Q ,Q ,U ,U ,W ,W ,R ,R ,P ,P ,V ,V ,S ,S ,T ,T - 33 - Flat Panel Displays TCAD/Circuit Design

  34. ATLAS – 2D/3D TFT Device Simulation: ESD Simulation Using MixedMode & Giga  ESD Simulation: MixedMode + Giga(lattice temperature) Ex) Diode ESD : CDM model Pad Emitter Temp (K) Into LSI P-sub Base protective device DUT MM/HBM - 34 - Flat Panel Displays TCAD/Circuit Design

  35. ATLAS – 2D/3D TFT Devices Simulation: OTFT/OLED – Organic Devices Simulation  Transport Mechanisms  Metal & Semiconductors: charge transport are limited by scattering of the carriers, mainly due to thermally induced lattice deformations and phonons. Transport is limited by phonon scattering. Charge mobility decreases with temperature  Organic materials: transport occurs by phonon assisted hopping of charges between localized states. Charge mobility increases with temperature  General mobility model of organic material including Poole-Frenkel field-dependent mobility - 35 - Flat Panel Displays TCAD/Circuit Design

  36. ATLAS – 2D/3D TFT Devices Simulation: OTFT/OLED – Organic Devices Simulation  EL mechanism & Organic Models  Charge Injection(metal contact)  Ohmic(Dirichlet boundary condition)  Schottky contact(injection limited current) :  thermionic emission model - tunneling  interface barrier lowering  Transport model(bulk)  space-charge-limited current: Poisson + Current continuity equations  trap-charge-limited current: DDM + Defects states  Hopping process : Poole-Frenkel mobility  Recombination & Emission(internal efficiency)  Langevin radiative recombinatoin  Exiton radiative decay – singlets/triplets(1 FL:3 PL default)  Optical Output Coupling calculation - 36 - Flat Panel Displays TCAD/Circuit Design

  37. ATLAS – 2D/3D TFT Devices Simulation: OTFT/ OLED – Organic Devices Simulation - 37 - Flat Panel Displays TCAD/Circuit Design

Recommend


More recommend