first results of t2k nd280 front end electronics
play

First results of T2K - nd280 Front End Electronics performance with - PowerPoint PPT Presentation

First results of T2K - nd280 Front End Electronics performance with GM - APDs Antonin Vacheret for the T2K-UK electronics and photosensors groups 1 Outline T2K and the 280m near detectors overview of the Trip - t Front End Board ( TFB )


  1. First results of T2K - nd280 Front End Electronics performance with GM - APDs Antonin Vacheret for the T2K-UK electronics and photosensors groups 1

  2. Outline ➡ T2K and the 280m near detectors ➡ overview of the Trip - t Front End Board ( TFB ) ➡ Measurements with MPPC 100 / 400 pixels • Charge spectra • Timestamping • Voltage trim functionality tests Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 2

  3. Tokai to Kamioka 12 countries, 62 institutions, ~ 350 people Far detector : Super Kamiokande ν beam : J - PARC facility sin 2 2 θ 13 Sensitivity ➡ 2009 Phase I : θ 13 , θ 23 , Δ m 223 20 % 10 % • J-PARC : 0.75 MW 30 GeV 10 - 1 5 % • SK-III : 22.5 kT FV, full PMT 3 σ coverage 10 - 2 90 % C . L . ➡ 2015 Phase II : θ 13 , δ CP ? 10 - 3 • J-PARC : 4MW 50 GeV Phase I Phase II • HyperK : 1 MT scale 1 10 100 Exposure ( 22 . 54kTxyear ) Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 3

  4. 280m near detectors complex T2K baseline ND280 : o fg axis beam flux and SuperK backgrounds measurements UA1 Magnet Left clam ~ 8 m ND280 Pit P0D ECal Neutron shield ν 16m INGRID : on axis neutrino flux measurement SK ND280 o fg axis SK SK direction INGRID P0D : π 0 detector FGD MRD 36m 2 ° Tracker : ν ν beam - 2 FGD : Fine grained 5m scintillator detectors BEAM 3 ° ~14m - 3 TPCs Tracker ECal Side Muon ranger detector ( in magnet air gaps ) Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 4

  5. Scintillators readout constraints ➡ Magnetic field • UA1 magnet will be operated at B = 0.2 T ➡ Low light yield • In scintillators sub-systems ~ 10-15 p.e./MIP/cm expected ➡ Very tight space constraints • small space for readout ➡ High number of channels • ~60000 total ➡ Detector in operation for 5 years • Low maintance is desirable ➡ GMAPD is only candidate that met ( almost ) all requirements Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 5

  6. Scintillators Readout Scintillator bar readout cut view ( ECAL ) Connector design for P0D / ECAL WLS Fibre Ferrule X plane sensor spring foam Y plane connector PCB board Shroud 5 cm ➡ Scintillator + Wavelength shifting fibre + GMAPD • Kuraray Y-11 1 mm diameter WLS fibre ➡ Tight readout space in UA1 magnet ➡ GMAPDs have individual connector ➡ Good coupling crucial to minimise light loss at fibre end Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 6

  7. ND280 Electronics overview SiPM63 SiPM63 SiPM63 SiPM0 SiPM0 SiPM0 … … … TFB0 TFB1 TFB47 … Trigger Primitives TPS Power Clk & trg distribution data CTM RMM0 Cosmic trigger Clk & trg Clk & trg Ethernet Gigabit/ Acronyms: Acronyms: TFB: TRIP-t front-end board TFB: TRIP-t front-end board RMM: r/o merger module RMM: r/o merger module MCM SCM CTM: global trigger module CTM: global trigger module Clk & trg FPN MCM: master clock module MCM: master clock module GPS 1Hz/100MHz Spill trig & # (Acc. RF) Special SCM: SCM: slave clock module slave clock module trigger TPS: TPS: TRIP-t power supply TRIP-t power supply Gigabit/ Gigabit/ Ethernet FPN: FPN: front-end proc. node (PC) front-end proc. node (PC) Ethernet Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 7

  8. TRIP - t Front end board ( front view ) miniature coax connectors 12 layers – 6 routing, 6 power/GND for photo-sensors 16 cm JTAG HV switch 5V 9cm I 2 C for trigger ext. temp. RJ45 out sensors 3V3 data in RJ45 data out 2V5 100 MHz trigger in 1V2 JTAG 2 x dual channel power 10 bit ADCs regulators Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 8

  9. TRIP - t Front end board ( back ) BGA footprint gain splitting and bias components for PROM temperature and voltage HV trim HV trim HV trim HV trim monitoring tript tript FPGA tript tript HV trim HV trim HV trim HV trim 8 x 8 channel HV trim DACs - 5V trim range on every channel Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 9

  10. TRIP - t parameters ➡ 32 synchronous channels ➡ Adjustable Integration window • 50 nsec to many musec • reset time can also be adjusted, 50 nsec minimum ➡ Adjustable gain • saturation at 3000 fC • noise < 1fC ➡ Bu fg er depth 23 timeslices ➡ Timestamp discriminator threshold for each TRIP - t • 1 timestamp per channel/integration window ➡ Timestamp generation from 400MHz TDC ( FPGA ) • 2.5 ns resolution Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 10

  11. J - PARC Spill structure Spill Structure 4 . 2 μ s 4 . 2 μ s 4 . 2 μ s 2 - 3 . 3 s 2 - 3 . 3 s in spill after spill inter spill neutrino interactions delayed signals switch to cosmics / calibration mode 540 ns 540 ns 8 ( 15 ) 2 3 8 1 bunches ( 241 ) ns ( 241 ) ns 58 ns 58 ns 58 ns Trip - t Chip time structure Integration Integration Reset Reset Readout Timestamp generation 8 ( 15 ) bunches per spill ➡ 4 ( 2 ) muon lifetime after spill active period ( 90 ( 80 )% active ) ➡ • translates to 50-70% in Michel electron tagging efficiency Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 11

  12. TRIP - t front end ➡ Only pre - amp a fg ects signal feeding discriminator • no fine control (x1 or x4) ➡ discriminator threshold Vth • common to all channels on chip ➡ Analogue bias settings • gain, Vth, etc • programmable via serial interface Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 12

  13. GMAPD - TFB connection HVglobal 47k 50V, 0402 220pF 50V 47k trip-t 0402 50V, 0402 100pF 100V cal test 0603 pulse 10pF 51R photo- 100V, 0603 LV sensor 0603 coax sheath not DC 10pF 330pF coupled to GND 100nF 100V 1k 100V LV 0603 LV, 0402 0603 0402 HVtrim(0-5V) ➡ HVglobal : common to all GMAPD channels on the TFB ➡ HV Trim : 5V individual bias voltage adjustment ➡ HV Trim applied to coax sheath - AC coupled to GRD Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 13

  14. Interconnections Miniature coaxial cable ( HRS ) ➡ • stands voltage input up to 100V min coax connectors on top surface ➡ Gain splitting and bias components ➡ on bottom surface Electric fan - in to TRIP - t inputs on ➡ internal layer to avoid pick - up Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 14

  15. TFB Pedestal and noise Pedestals average pedestal value for all 4 ADC units 170 chips 160 small systematic chip-to-chip 150 differences 140 1 p.e. ~ 10 ADC units 0 20 40 60 80 100 120 (for 5x105 photo-sensor gain) ADC sample no. Noise rms ADC units 2.0 1.5 noise ~ 1 ADC unit 1.0 small difference in noise between high and low gain channels 0.5 0.0 0 20 40 60 80 100 120 ADC sample no. 1 st trip-t 2 nd 3 rd 4 th Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 15

  16. TFB linearity pedestal subtracted 1000 800 ADC units ADC units 800 600 600 400 400 200 200 0 0 10 20 30 40 0 10 20 30 40 external injected charge [pC] external injected charge [pC] 1000 64 high ( red ) and low ( blue ) channels ➡ ( 4 TRIP - t ' s, 16 hi / lo channels per chip ADC units 100 Behavior ~ identical to single TRIP - t ➡ chip 10 5 % channel spread attributed to gain ➡ setting component tolerances Calibration required to correct non - 1 ➡ 4 6 2 4 6 2 4 6 2 4 linearities 0.1 1 10 external injected charge [pC] Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 16

  17. TFB Discriminator settings 3.5 p.e. 2.5 p.e. 1.5 p.e. discriminator turn-on curves for all 16 channels from 1 trip-t 200 number of timestamps [out of 200] measurement procedure: inject fixed external charge (200 triggers) 150 sweep discriminator thresh. voltage Vth count no. of times discriminator fires (no. of timestamps) 100 3 separate measurements for 1.5, 2.5 and 3.5 p.e. equivalent external injected 50 charge (assuming 5x10 5 electrons/p.e.) channel-to-channel spread better than that 0 previously measured on single chip test board 140 150 160 170 180 190 200 210 220 230 possibly attributable to shielded layout of fan-in tracking between Vth setting input connectors and trip-t I/Ps? ~ 0.2 p.e. Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 17

  18. Measurements using GMAPD ➡ Motivation : • Check behavior with T2K GMAPD candidates • Identify problems with prototype • Start developing large scale sensor QA methods using the TFB ➡ TFB prototypes received beginning of June • Currently under tests • TFB firmware well advanced, almost all functionalities being implemented Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 18

  19. Test setup T Pulse 100V Controller generator source PC ND Filter wheel GMAPD RMM TFB emulator TFB Standard protocol protocol LED source (USB) Mini coax. 475 nm Iris Peltier heat pump MPPC 400 and 100 pixels ( S1036211XXX - C ) ➡ 250 ns • Temperature T=25ºC • 400 pixels : G ~ 7x10 5 DCR ~ 400kHz TFB cycles • 100 pixels : G ~ 1x10 6 DCR ~ 500kHz 100 ns NANOLED source, 1 ns pulse width ➡ TFB settings ➡ LED flash • 10 integrations window : 250 ns • reset period : 100 ns 150 ns Antonin Vacheret, Imperial College London PD07, June 25-27 2007 Kobe, Japan 19

Recommend


More recommend