Reissner-Mindlin Plate Bending Finite Element Formulation Tarun Kant Department of Civil Engineering Indian Institute of Technology Bombay E-mail: tkant@civil.iitb.ac.in Website: www.civil.iitb.ac.in/~tkant 1
BEAM z w p(x) x u τ xz dz σ x z Δ x x 2
Euler-Bernoulli Beam u ( , ) ( ,0) u x z u x z z 0 z ( , ) ( ,0) w x z w x or more concisely ( ) ( ) u u x z x u z o ( ) w w x w o 3
S-D Relations u u o z x x x x u w w o xz z x x setting 0 gives us xz w o x Causes occurrence of second derivative of w o in PE functional “π” Involves C 1 continuous interpolation functions in finite element formulation 4
Non-vanishing stresses and strains , x xz x 5
Before deformation 6
After deformation 7
Timoshenko Beam Displacement Model Same as that of Euler-Bernoulli Beam Non-Vanishing Stresses/Strains , , ( ) x x xz x xz S-D Relations w u o o z xz x x x x 8
Timoshenko Beam Π contains only first derivatives of w o and θ FE Formulation uses simple C o shape functions 9
Euler-Bernoulli Beam, Poisson-Kirchhoff Plate and Love Shell Theories Thin beam, plate, shell, i.e., (h/L) << 1 or (h/a) << 1 or (h/R) << 1 Tangential displacements vary linearly through the thickness. Transverse shear deformation is neglected, γ 1z = γ 2z =0 Transverse normal strain is zero, ε z = 0 Transverse normal stress is small (neglected), σ z ≈ 0 10
After deformation γ or φ θ Reissner-Mindlin theory 11
Kirchhoff Hypothesis Limitations Transverse shear deformability of structural elements (especially of shear deformable FRC laminates) is not accounted in the formulation Transverse normal rotations of the cross sections becomes first derivatives of transverse displacement components, w o i x i Transverse displacement field turns C 1 continuous 12
Remarks Popular displacement – based formulations include – transverse shear deformation/s. ? This is not only due to the significance of shear deformation effects in moderately thick/multilayered/FR composite elements. But mainly because the resulting formulation is C o which enables simple interpolations. 13
Remarks (Contd.) The classical Poisson-Kirchhoff plate theory requires C 1 continuity. C o – continuous finite element interpolations are easily constructed. Multi-dimensional C 1 -interpolations are difficult/tedious to construct. Considerable ingenuity was required to develop compatible C 1 - continuous plate/shell elements; resulting schemes have always been extremely complicated in one way or another. 14
Remarks (Contd.) Since mid-seventies, there is turning away from Poisson-Kirchhoff theory based elements to those based on Reissner-Mindlin theory which not only requires C o -continuity but also accommodates transverse shear deformations. However, these too, initially, were not without its own inherent difficulties. - Locking in ‘thin’ regime - Spurious ‘zero - energy’ modes 15
Positive set of stress components 16
Positive set of displacement components z w o w y v u v o y u o x x 17
Kinematics ( , , ) ( , ) u x y z z x y y ( , , ) ( , ) v x y z z x y x z ( , , ) ( , ) w x y z w x y o w o w t ( , , ) u u v w y v u v o y t ( , , ) u u w o x y o x x or ( , , ) w o x y 18
Strains u y z z x x x x v x z z y y y y u v y x z z xy xy y x y x w u w o xz y x z x x w v w o yz x y z y y 19
Middle Surface Strains 0 0 ε t ( , , ) x b x y xy 0 0 ε t ( , ) y w s y x o ε Lu 0 ε t t t x ( , ) x y b s y 0 1 x 1 0 0 0 y x ε L u b b 0 1 0 0 L b x y ε L u L s s s 1 0 0 y x y 20
Total Potential Energy U W 1 ε σ u b u t t t t = dV dV dS 2 V V S t u : vector of displacement components of int a po in plate space ε : vector of strain components σ : vector of stress components b : vector of body forces t : vector of boundary tractions V : sol ution domain : S part of boundary on which boundary tractions are prescribed t 21
Strain Energy U U U b s 1 U dV b x x y y xy xy 2 V 1 = z z z dV x x y y xy xy 2 V 1 ( ( ) ( ) ( ) = zdz zdz zdz dA x x y y xy xy 2 A z z z 1 = M M M dA x x y y xy xy 2 A 1 ε σ t . = dA b b 2 A 22
in which σ t ( , , ) M M M b x y xy ε t ( , , ) b x y xy 23
Shear Strain Energy 1 U dV s xz xz yz yz 2 V 1 = dAdz xz x yz y 2 V 1 ( ) ( ) = dz dz dA x xz y yz 2 A z z 1 = Q Q dA x x y y 2 A 1 ε σ t . = dA s s 2 A 24
Strain Energy U U U b s 1 1 ε σ ε σ t t . . dA dA b b s s 2 2 A A 1 1 ε D ε ε D ε t t . . dA dA b b b s s s 2 2 A A 25
Work Done W w p dxdy t ( , , ) o z u w o x y A t u p dxdy t ( ,0,0) p p z A 26
Equilibrium U W 0 U W U W Minimum Potential Energy Principle or U W Virtual Work Principle 27
Constitutive Relations - 3D Define, σ t , , σ E ε b x y xy b b b σ t , s xz yz σ E ε σ σ σ s s s t t t , b s σ = Eε ε t , , b x y xy ε t , s x y ε ε ,ε t t t b s 28
Constitutive Relations - 3D (Contd.) 0 E E x 11 12 x σ E ε 0 E 22 b y y b b sym E 33 xy xy 0 E xz xz 1 σ S E ε s s s 0 E yz 2 yz S For isotropic material, E ; E E G ; E E 1 2 S S 11 22 2 1 E ; ; G E E 12 11 2(1 ) 1 E E G σ = Eε 33 11 2 29
Constitutive Relations - 2D 0 M D D x 11 12 x σ D ε 0 M D b b y 22 y b sym D M 33 xy xy Q 0 D x x 1 S D ε s s Q 0 D y 2 y S For isotropic material, 3 3 1 Eh h ; ; ; D D D D D D G 11 22 12 11 33 11 2 2 12 12 1 2 5 E ; ; D D kGh G k or 1 2 S S 2(1 ) 6 12 σ Dε 30
Recommend
More recommend