final presentation
play

FINAL PRESENTATION Purdue University Andrea Vacca 4/20/2017 Team - PowerPoint PPT Presentation

FINAL PRESENTATION Purdue University Andrea Vacca 4/20/2017 Team Introduction Chenxi Li Zhuangying Xu Zhengpu Chen Yizhou Mao Gianluca Marinaro 2 Team Advisor Andrea Vacca Team Advisor PhD , Associate Professor Maha Fluid Power


  1. FINAL PRESENTATION Purdue University Andrea Vacca 4/20/2017

  2. Team Introduction Chenxi Li Zhuangying Xu Zhengpu Chen Yizhou Mao Gianluca Marinaro 2

  3. Team Advisor Andrea Vacca Team Advisor PhD , Associate Professor Maha Fluid Power Research Center Purdue University 3

  4. Problem Statement and Project Objective • Light • Efficient • Safe • Human Interactive Purdue Tracer 4

  5. Hydraulic System - Layout A HP hand pump RV inverse relief valve A accumulator P main pump NV needle valve M motor DG dog gear CV# check valves V1 On-Off, NO, poppet V2 On-Off, NC, poppet RP regener. pump A2 NV V2 V1 CV2 CV1 A1 HP P A3 M RP DG RV Control Outputs Sensor Input 5

  6. Hydraulic System Design Pedaling Mode A V1 V2 Not activated Not activated A2 NV V2 V1 CV2 CV2 CV1 A1 P A3 M RP DG RV Control Outputs Sensor Input 6

  7. Hydraulic System Design Charging Mode A A V1 V2 Activated Activated A2 NV V2 V1 CV2 CV1 A1 HP P A3 M RP DG RV Control Outputs Sensor Input 7

  8. Hydraulic System Design Boost Mode A V1 V2 Not activated Activated A2 NV V2 V1 CV2 CV1 A1 HP P A3 M RP DG RV Control Outputs Sensor Input 8

  9. Hydraulic System Design Regeneration Mode AA V1 V2 Activated Activated A2 NV V2 V1 CV2 CV1 A1 HP P A3 M RP RV DG Control Outputs Sensor Input 9

  10. Hydraulic System Design - Sizing A 𝑊 𝑛 · 𝑜 Q = 1000 · η 𝑤,𝑛 A2 V p = 𝑅 · 1000 20𝜌 · 𝑈 𝑛 NV V m = V2 𝑜 · 𝜃 ℎ𝑛,𝑞 𝛦𝑞 · 𝜃 ℎ𝑛,𝑛 V1 CV2 CV1 A1 HP P A3 M RP DG RV 𝐺 = 𝑁𝑕𝑡𝑗𝑜(𝜄) + 𝑁𝑕𝑔𝑑𝑝𝑡(𝜄) Control Outputs Sensor Input 𝑈 𝑛 = F · r 10

  11. Hydraulic System Design - Sizing Accumulator pressure Vehicle linear velocity Efficiency function 𝑋 ∗ 𝑀 𝑞 ∗ 𝑊 11

  12. Hydraulic System Design - Sizing Implementation of the model with maps of pump/motor efficiency Volumetric efficiency for an external gear pump Mechanical efficiency for an external gear pump 12

  13. Hydraulic System Design - Sizing Numerical Optimization – Pedaling & Boost modes NLPQL - INPUTS Lower Bound Upper Bound Pump Displacement 1 cc/rev 9 cc/rev Given data: Motor Displacement 1 cc/rev 9 cc/rev Accumulator Pre-charge Gas 20 bar 45 bar • Cadence = 70 rpm Front Gear Ratio 5 9 • Acc. volume = 2 L • Acc. Max press.= 180bar Rear Gear Ratio -8 -1 • Vehicle parameters NLPQL - OUTPUTS Objective Upper Bound ✔ Efficiency ✔ Velocity Torque IN (Human Constraint) 25 Nm 13

  14. Hydraulic System Design – Sizing Performance – Pedaling & Boost modes Pedaling Mode Power 183 W Torque IN (Human) 25 Nm Pump shaft 435 rpm Best Design* Bike speed 5.10 m/s Pump Displacement 4.52 cc/rev Main line pressure 46 bar Motor Displacement 2.13 cc/rev Main line flow rate 1.81 L/min Accumulator Volume 2.00 L Pump vol. Efficiency 88.91 % Acc. Pre-charge Gas Pressure 25 bar Pump mec. Efficiency 86.76 % Front Gear Ratio 1/5.68 Motor vol. Efficiency 94.62 % Rear Gear Ratio 4.47 Motor mec. Efficiency 85.55 % Overall Efficiency 62.44% Boost Mode Max speed 5.21 m/s Efficiency Function 51.12 14 14 Distance covered 221 m

  15. Hydraulic System Design – Sizing Performance – Pedaling & Boost modes Selected Components Best Design Pump CASAPPA PLP 10-4 4.27 cc/rev Pump Displacement 4.52 cc/rev Motor CASAPPA PLM 10-2 2.13 cc/rev Motor Displacement 2.13 cc/rev Accumulator STEEL MicroForce 2.00 L Accumulator Volume 2.00 L HEAD COMPOSITES Acc. Pre-charge Gas Pressure 25 bar Acc. Pre-charge Gas 25 bar Pressure Front Gear Ratio 1/6.48 Front Gear Ratio 19/120 1/6.32 Rear Gear Ratio 4.00 (MISUMI) Rear Gear Ratio 100/25 4.00 (MISUMI) 15

  16. Hydraulic System Design - Sizing Pedaling Mode (Best Design) Pedaling Mode (Selected components) Power 183 W Power 223 W Torque IN (Human) 25 Nm Torque IN (Human) 30 Nm Pump shaft 435 rpm Pump shaft 442 rpm Bike speed 5.10 m/s Bike speed 5.87 m/s Main line pressure 46 bar Main line pressure 64.59 bar Main line flow rate 1.81 L/min Main line flow rate 1.64 L/min Pump vol. Efficiency 88.91 % Pump vol. Efficiency 86.36 % Pump mec. Efficiency 86.76 % Pump mec. Efficiency 90.85 % Motor vol. Efficiency 94.62 % Motor vol. Efficiency 90.81 % Motor mec. Efficiency 85.55 % Motor mec. Efficiency 90.43 % Overall Efficiency 62.44% Overall Efficiency 64.44 % Boost Mode (Best Design) Boost Mode (Selected components) Max speed 5.21 m/s Max speed 4.87 m/s Efficiency Function 51.12 Efficiency Function 50.55 16 Distance covered 221 m Distance covered 214 m 16

  17. Hydraulic System Design – Sizing Numerical Optimization – Regeneration mode NLPQL - INPUTS Lower bound Upper Bound Regeneration Pump Displacement 1 cc/rev 10 cc/rev Regeneration Gear Ratio -50 -1 NLPQL - OUTPUTS Objective ✔ Accumulator Pressure 17

  18. Hydraulic System Design – Sizing Performance – Regeneration mode Best Design* Selected components Regeneration Pump Displacement 4.23 cc/rev Casappa PLP 10-4 4.27 cc/rev Regeneration Gear Ratio 17.82 Regeneration Gear Ratio 16.80 Best Design Performance* Selected comp.Performance Accumulator Press. Increase 3.81 bar Accumulator Press. increase 3.80 bar Breaking 5.56 m / 3.16 s Breaking 5.29 m / 3.05 s Max breaking torque 52 Nm Max breaking torque 49 Nm 1.2 m/s 2 1.2 m/s 2 Max deceleration Max deceleration *V 0 = 8.00 mph (3.58 m/s) 18

  19. Purdue Tracer 19

  20. Frame Features • Internal Oil Reservoir – 3.7 Liters Total Volume – Space & Budget Saved • Recommended Angle for Cycling – 74 Deg Seat Tube Angle • Weight Optimization http://www.trinewbies.com/tno_cycling/tno_cyclearticle_02.asp – Minimum Weight (Aluminum) – Weight Distribution • Perfect Workmanship 20

  21. Frame – Reservoir – Accumulator Full – Tank Full – No oil 21

  22. Frame FEA 22

  23. Front Gear Box Front Gear Box Technical Specifications Gear and Shaft Material Stainless Steel Number of Gear Stages 1 Gear Ratio 120/19 23

  24. Motor Gear Box Motor Gear Box Technical Specifications Gear and Shaft Material Stainless Steel Number of Gear Stages 1 Gear Ratio 100/17 Shimano Gear Hub Reduction 0.5/1 – 1.6/1 24

  25. Regeneration Gear Box Regeneration Gear Box Specifications Gear and Shaft Material Steel Number of Gear Stages 2 Primary Gear Ratio 120/20 Secondary Gear Ratio 56/20 Total Gear Ratio 16.8/1 25

  26. Electronic System Purpose: Electrical Improvements: • • • Maximize interaction Modern Safe • • Commercial value Intelligent Bluetooth Module Sensors - Get data Cellphone - App Shimano Gear Hub Gear Ratio Valves:open/close Arduino - Microcontroller (Change Modes)

  27. Application Design Gear Add Bicycle Application Bicycle Supplementary Contact Data Display control functions section Mode Bicycle Mode Human Geolocation FAQ Control Data Mode Data Gear Ratio Weather Velocity Velocity Contact Page Control Indication Main Line Company Heart Rate Pressure Information Accumulator Human Click Pressure Torque Human Flow Rate Power Gear Pump Torque Cadence Decrease Pump Power

  28. Application Design Bicycle Application Bicycle Supplementary Contact Data Display control functions section Mode Bicycle Mode Human Geolocation FAQ Control Data Mode Data Gear Ratio Weather Velocity Velocity Contact Page Control Indication Main Line Company Heart Rate Pressure Information Accumulator Human Pressure Torque Human Flow Rate Power Pump Torque Cadence Pump Power

  29. System Control Click Circuit Close NC Valve VCC Relay Low voltage signal Signal END Normally Connected disconnected 12 V battery

  30. System Control Click Circuit Close BOOST MODE: NC Valve

  31. Data Collection Pressure Heart rate sensor - sensor Accumulator Hall rpm sensor Pressure Hall rpm Sensor - sensor Main line

  32. Regeneration Mode Proportional Button Micro Processor Relief Valve Voltage ⬇ ------ Pressure ⬆ Press the Button: Voltage ⬆ Process the signal Accumulator Save Energy! Reference: http://www.sunhydraulics.com/model/RBAN/XAN912N

  33. Actual Test Data Compared to Analysis Experimental results Pre-charge [bar] Distance covered [m] Efficiency function 60 315 Boost mode: 32.1971 40 310 48.2957 Efficiency Fuction = 𝑋 · 𝑀 30 280 58.1632 𝑞 · 𝑊 25 240 59.7417 70 efficiency function 60 W = 127 kg (rider+bike) 50 V = 2 liters 40 30 20 20 30 40 50 60 accumulator precharge [bar] 33

  34. Actual Test Data Compared to Analysis Model validation 200 Pressure [bar] Accumulator 150 100 50 0 0 10 20 30 40 50 60 70 80 90 30 Vehicle linear velocity 20 [km/h] 10 0 0 10 20 30 40 50 60 70 80 90 Time [s] Experimental Model 34

  35. Actual Test Data Compared to Analysis Reoptimization (future work) • After refining the model, a new AMESim optimization function must be used to determine a new set of optimally sized hydraulic components; • Due the constraints of the competition, the team does not have time to rebuild the prototype based on this new information; • The new model could be used next year.

Recommend


More recommend