feature matching via sparse relaxation models
play

Feature Matching via Sparse Relaxation Models jiangbo@ahu.edu.cn - PowerPoint PPT Presentation

Feature Matching via Sparse Relaxation Models jiangbo@ahu.edu.cn 2018-8-8 Content 1 Introduction 2 Problem formulation Related works 3 Sparse models for matching 4 Conclusion and


  1. Feature Matching via Sparse Relaxation Models 江 波 jiangbo@ahu.edu.cn 安徽大学 计算机科学与技术学院 2018-8-8

  2. Content 1 Introduction 2 Problem formulation Related works 3 Sparse models for matching 4 Conclusion and future works 5

  3. Introduction

  4. Introduction

  5. Introduction Object detection

  6. Introduction Object detection Person ReID, Zhou et al. AAAI 2018

  7. Introduction Object detection Person ReID, Zhou et al. AAAI 2018 Luo et al. PAMI 2001 ***

  8. Introduction Object tracking, CVPR 2016 Object tracking, Nebehay et al. CVPR15 Object detection Person ReID, Zhou et al. AAAI 2018 Luo et al. PAMI 2001 ***

  9. Introduction Object tracking, Nebehay et al. CVPR15 Object detection Person ReID, Zhou et al. AAAI 2018 Shape matching, Bai et al. PAMI2008 Luo et al. PAMI 2001 ***

  10. Introduction Object tracking, CVPR 2016 Object tracking, Nebehay et al. CVPR15 Object detection Person ReID, Zhou et al. AAAI 2018 Shape matching, Bai et al. PAMI2008 Common Visual Pattern Discovery Luo et al. PAMI 2001 ***

  11. Problem Formulation

  12. Problem Formulation

  13. Problem Formulation

  14. Problem Formulation

  15. Problem Formulation

  16. Problem Formulation

  17. Problem Formulation Integer Quadratic Programming (IQP) problem  NP-hard problem  Approximate solution

  18. Related works Continuous Relaxation

  19. Related works Continuous Relaxation

  20. Related works Continuous Relaxation Continuous relaxation Local optimal for the relaxed Continuous problem optimization Continuous solution Post-discretization Not a local optima for the original Discrete solution problem

  21. Related works Continuous Relaxation Spectral matching-ICCV 2005 Spectral matching with affine constraint-NIPS 2006  GA-PAMI 1996 Doubly stochastic relaxation  POCS-PAMI 2004  RRWM-ICCV 2010  SCGA-ECCV 2012  Probabilistic Models ……

  22. Related works Discrete Methods Integer Projected Fixed Point (IPFP) -NIPS 2009 Factorized Graph Matching (FGM) - CVPR 2012 Discrete Tabu Search – ICCV 2015 Hungarian-BP-CVPR 2016

  23. Related works Sparse Relaxation Discrete constraint relaxation Nonnegative sparse Nonnegative sparse model

  24. Related works Sparse Relaxation Spectral matching (SM)-ICCV 2005 Game-theoretic matching (GameM)-ICCV 2009, IJCV 2011 Elastic net matching (EnetM)-ICCV 2013 Sparse nonnegative matrix factorization (SNMF)-PR 2014

  25. Local sparse model for matching Motivation

  26. Local sparse model for matching Motivation

  27. Local sparse model for matching Motivation

  28. Local sparse model for matching Motivation

  29. Local sparse model for matching Motivation

  30. Local sparse model for matching Motivation Local Sparse Model Observations  Each row of solution matrix X is sparse  There is no zero row in solution matrix X

  31. Local sparse model for matching Local sparse matching L12 norm Local sparse  L1 norm on each row encourages sparsity  L2 norm on rows encourages that there is no zero row Bo Jiang, et al., A Local sparse model for matching problem, AAAI 20 2015

  32. Local sparse model for matching Algorithm is the matrix form of Properties Bo Jiang, et al., A Local sparse model for matching problem, AAAI 20 2015

  33. Local sparse model for matching Illustration

  34. Local sparse model for matching Bo Jiang, et al., A Local sparse model for matching problem, AAAI 20 2015

  35. Local sparse model for matching Bo Jiang, et al., A Local sparse model for matching problem, AAAI 20 2015

  36. Binary constraint preserving matching Motivation Integer Quadratic Programming (IQP) problem

  37. Binary constraint preserving matching BPGM formulation Binary constraint preserving  As ϒ becomes larger, the more closely x approximates to discrete  It provides a series of relaxation models Bo Jiang, et al., Binary constraint preserving graph matching, CVPR 20 2017

  38. Binary constraint preserving matching Theoretical analysis Pro Prope perty rty 1. When ϒ = n , where n is the number of features, BPGM model is equivalent to original matching problem Pro rope perty rty 2. When ϒ = || x * || , where x * is the optimal solution of problem (2), BPGM model is equivalent to the matching problem (2) Balanced model between (1) and (2) Bo Jiang, et al., Binary constraint preserving graph matching, CV CVPR 20 2017

  39. Binary constraint preserving matching Theoretical analysis Lemma Lemma 3. There exists a parameter ϒ 0 such that BPGM with ϒ = ϒ 0 has a global optimal solution Path-following strategy Starting from global optimal solution and aims to obtain the discrete solution Bo Jiang, et al., Binary constraint preserving graph matching, CV CVPR 20 2017

  40. Binary constraint preserving matching Algorithm Bo Jiang, et al., Binary constraint preserving graph matching, CV CVPR 20 2017

  41. Binary constraint preserving matching

  42. Binary constraint preserving matching

  43. Multiplicative update matching Our method Traditional methods Doubly stochastic relaxation Doubly stochastic relaxation Local optimal for the relaxed Local optimal for problem Continuous the relaxed optimization problem Continuous Continuous solution optimization Hungarian algorithm A local optima for the original Post-discretization problem Not a local optima for the Discrete solution Discrete solution original problem

  44. Multiplicative update matching Doubly-stochastic Relaxation

  45. Multiplicative update matching Doubly-stochastic Relaxation

  46. Multiplicative update matching Doubly-stochastic Relaxation

  47. Multiplicative update matching Doubly-stochastic Relaxation Multipliers

  48. Multiplicative update matching Doubly-stochastic Relaxation Multipliers

  49. Multiplicative update matching Doubly-stochastic Relaxation Multipliers

  50. Multiplicative update matching Doubly-stochastic Relaxation Multipliers

  51. Multiplicative update matching Doubly-stochastic Relaxation Multipliers

  52. Multiplicative update matching Doubly-stochastic Relaxation Solution update

  53. Multiplicative update matching Doubly-stochastic Relaxation Solution update

  54. Multiplicative update matching

  55. Multiplicative update matching Algorithm

  56. Multiplicative update matching Algorithm

  57. Multiplicative update matching Convergence Optimality Bo Jiang, et al., Graph Matching via Multiplicative Update Algorithm, NI NIPS 2017

  58. Multiplicative update matching Top: start from uniform solution Middle: start from Spectral Matching (SM) solution Bottom: start from Random Walk (RRWM) solution Bo Jiang, et al., Graph Matching via Multiplicative Update Algorithm, NI NIPS 2017

  59. Multiplicative update matching  Synthetic data

  60. Multiplicative update matching

  61. Reference  Bo Jiang, Jin Tang, Chris Ding, Yihong Gong and Bin Luo, Graph Matching via Multiplicative Update Algorithm, Neural Information Processing Systems ( NIPS -2017)  Bo Jiang, Jin Tang, Bin Luo and Chris Ding, Binary constraint preserving graph matching, IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ), pp.4402-4409, 2017  Bo Jiang, Jin Tang, Chris Ding and Bin Luo, Nonnegative Orthogonal Graph Matching, AAAI Conference on Artificial Intelligence ( AAAI ), pp.4089-4095, 2017  Bo Jiang, Jin Tang, Xiaochun Cao, Bin Luo, Lagrangian relaxation graph matching, Pattern Recognition , 61: 255-265, 2017  Bo Jiang, Jin Tang, Chris Ding and Bin Luo, A local sparse model for matching problem, AAAI Conference on Artificial Intelligence ( AAAI ), pp. 3790-3796, 2015  Bo Jiang, Jin Tang, Bin Luo and Liang Lin, Robust feature point matching with sparse model, IEEE Transactions on Image Processing , 23(12):5175-5186, 2014

  62. Conclusion and Future works Conclusion  Sparse relaxation model for matching problem  Binary constraint preserving model for matching  Multiplicative update algorithm for matching Future works  More theoretical analysis on Multiplicative matching  More effective algorithm to solve sparse matching model  Matching objective relaxation

  63. Thank you ! jiangbo@ahu.edu.cn

Recommend


More recommend