fate of axial u 1 symmetry at two flavor chiral limit of
play

Fate of axial U(1) symmetry at two flavor chiral limit of QCD in - PowerPoint PPT Presentation

Fate of axial U(1) symmetry at two flavor chiral limit of QCD in finite temperature Yasumichi Aoki & XQCD 2018 @ Frankfurt am Main May 21, 2018 Thanks to Those who gave me useful for useful discussion


  1. Fate of axial U(1) symmetry at two flavor chiral limit of QCD in finite temperature Yasumichi Aoki & XQCD 2018 @ Frankfurt am Main May 21, 2018

  2. Thanks to Those who gave me useful • • for useful discussion information for this talk • Ryuichiro Kitano Phillipe de Forcrand • • Norikazu Yamada Christian Lang • • JLQCD members Gian Carlo Rossi • • Sinya Aoki Peter Petreczky • • Guido Cossu Sayantan Sharma • • Shoji Hasihmoto Vicente Azcoiti • • Hidenori Fukaya Bastian Brandt • • Kei Suzuki ……

  3. U(1) axial 5 = N f ∂ µ J µ 32 π 2 F ˜ F violated by quantum anomaly • 5 ( x ) · O (0) i = N f 32 π 2 h F ˜ h ∂ µ J µ F ( x ) · O (0) i up to contact terms at T=0, responsible for η ’ mass • non-trivial topology of gauge field • at high T, this Ward-Takahashi identity is still valid • however, if configurations that contribute to RHS is suppressed……… • ➡ the symmetry effectively recovers ๏ here N f =2 (including N f =2+1 with “2” driven to chiral limit)

  4. Why bother ? Because it is unsettled problem ! • fate of U(1) A - analytic • Gross-Pisarski-Yaffe (1981) restores in high temperature limit • Dilute instanton gas • Cohen (1996) • measure zero instanton effect → restores • Lee-Hatsuda (1996) • zero mode does contributes → broken • Aoki-Fukaya-Tanigchi (2012) • QCD analysis (overlap) → restores w/ assumption (lattice) • Kanazawa-Yamamoto (2015) • EFT case study how restore / break • Azcoiti (2017) • case study how restore / break •

  5. Why bother ? Because it is unsettled problem ! • fate of U(1) A lattice • HotQCD (DW, 2012) broken • JLQCD (topology fixed overlap, 2013) restores • TWQCD (optimal DW, 2013) restores ? • LLNL/RBC (DW, 2014) broken • HotQCD (DW, 2014) broken • Dick et al. (overlap on HISQ, 2015) broken • Brandt et al. (O(a) improved Wilson 2016) restores • JLQCD (reweighted overlap from DW, 2016) restores • JLQCD (current: see Suzuki et al Lattice 2017) restores • Ishikawa et al (Wilson, 2017) at least Z 4 restores •

  6. Why bother ? it may provide useful information on the phase transition • if the U(1) A continue to be broken • SU(2) L x SU(2) R ≃ O(4) universality class for 2nd order • if the U(1) A recovers • U(2) L x U(2) R / U(2) V for 2nd order • provides crucial information on the universality class • 1st order possible for both cases • though often discussed in context with U(1) A restoration •

  7. Why bother ? it may provide useful information on the phase transition • ➡ Columbia plot ∞ Physical pt : crossover • 1st order Wuppertal 2006 Right upper corner : 1st order • physical pt. pure gauge m s other parts are less known • 1st order crossover ∞ 0 m ud [original Columbia plot: Brown et al 1990]

  8. Columbia plot: direct search of PT / scaling ∞ 1st order 2nd order • improved Wilson physical pt. • m s WHOT-QCD Lat2016 (O(4) scaling) • Ejiri et al PRD 2016 [heavy many flavor] • 1st oder • imaginary μ → 0 • 1st order crossover staggered Bonati et al PRD 2014 • ∞ 0 Wilson Phillipsen et al PRD 2016 • m ud

  9. Columbia plot: direct search of PT / scaling ∞ 1st order 2nd order • improved Wilson physical pt. • m s WHOT-QCD Lat2016 (O(4) scaling) • Ejiri et al PRD 2016 [heavy many flavor] • 1st oder • imaginary μ → 0 • 1st order crossover staggered Bonati et al PRD 2014 • ∞ 0 Wilson Phillipsen et al PRD 2016 • m ud external parameter → phase boundary → point of interest ➡ detour the demanding region

  10. Columbia plot: direct search of PT / scaling ∞ 1st order 2nd order • improved Wilson physical pt. • m s WHOT-QCD Lat2016 (O(4) scaling) • Ejiri et al PRD 2016 [heavy many flavor] • 1st oder • imaginary μ → 0 • 1st order crossover staggered Bonati et al PRD 2014 • ∞ 0 Wilson Phillipsen et al PRD 2016 • m ud B 0 Bonati et al -0.25 external parameter second order region → phase boundary -0.5 2 ( µ /T) → point of interest first order -0.75 region ➡ detour the demanding region -1 0 0.05 0.1 0.15 0.2 0.25 (am u,d ) 2/5

  11. Columbia plot: direct search of PT / scaling ∞ 1st order 2nd order • improved Wilson physical pt. • for all N t = 1/ (aT) = 4 or 6 m s WHOT-QCD Lat2016 (O(4) scaling) • problem not settled yet Ejiri et al PRD 2016 [heavy many flavor] • 1st oder • imaginary μ → 0 • 1st order crossover staggered Bonati et al PRD 2014 • ∞ 0 Wilson Phillipsen et al PRD 2016 • m ud B 0 Bonati et al -0.25 external parameter second order region → phase boundary -0.5 2 ( µ /T) → point of interest first order -0.75 region ➡ detour the demanding region -1 0 0.05 0.1 0.15 0.2 0.25 (am u,d ) 2/5

  12. GL-DW gluonic charge on DW ensemble GL-OV gluonic charge on OV ensemble OV- DW OV index on DW ensemble OV-OV OV index on OV ensemble χ t (m f ) for N f =2 T=220 MeV JLQCD: Lattice 2017 3 x12, β =4.3 32 2e+08 GL-DW GL-OV OV-DW 1.5e+08 OV-OV 4 ] χ [MeV 1e+08 5e+07 0 0 5 10 15 20 25 30 m f [MeV]

  13. gluonic charge on DW ensemble GL-OV gluonic charge on OV ensemble OV- DW OV index on DW ensemble OV-OV OV index on OV ensemble GL-DW χ t (m f ) for N f =2 T=220 MeV JLQCD: Lattice 2017 3 x12, β =4.3 32 2e+08 GL-DW GL-OV OV-DW 1.5e+08 OV-OV 4 ] χ [MeV 1e+08 5e+07 0 0 5 10 15 20 25 30 m f [MeV] physical ud

  14. GL-DW gluonic charge on DW ensemble GL-OV gluonic charge on OV ensemble OV- DW OV index on DW ensemble OV-OV OV index on OV ensemble χ t (m f ) for N f =2 T=220 MeV JLQCD: Lattice 2017 3 x12, β =4.3 32 2e+08 GL-DW GL-OV OV-DW 1.5e+08 OV-OV 1st order transition ? 4 ] χ [MeV 1e+08 5e+07 0 0 5 10 15 20 25 30 m f [MeV] physical ud

  15. gluonic charge on DW ensemble GL-OV gluonic charge on OV ensemble OV- DW OV index on DW ensemble OV-OV OV index on OV ensemble GL-DW χ t (m f ) for N f =2 T=220 MeV JLQCD: Lattice 2017 3 x12, β =4.3 32 2e+08 GL-DW GL-OV OV-DW 1.5e+08 OV-OV 1st order transition ? 4 ] χ [MeV 1e+08 5e+07 make sense al a Pisarski & Wilczek 0 0 5 10 15 20 25 30 m f [MeV] physical ud

  16. gluonic charge on DW ensemble GL-OV gluonic charge on OV ensemble OV- DW OV index on DW ensemble OV-OV OV index on OV ensemble GL-DW χ t (m f ) for N f =2 T=220 MeV JLQCD: Lattice 2017 3 x12, β =4.3 32 2e+08 GL-DW GL-OV OV-DW 1.5e+08 OV-OV 1st order transition ? 4 ] χ [MeV 1e+08 JLQCD: U(1) A restoration 5e+07 make sense al a Pisarski & Wilczek 0 0 5 10 15 20 25 30 m f [MeV] physical ud

  17. if upper left corer is 1st order 0 ≤ m f < m c : 1st oder • might affect the physics around physical point • ∞ ∞ ? physical pt. m s m s ∞ ∞ 0 0 m ud m ud

  18. Columbia plot: direct search of PT / scaling ∞ 1st order physical pt. m s 1st order crossover ∞ 0 m ud

  19. Columbia plot: direct search of PT / scaling ∞ 1st order physical pt. m s 1st order crossover ∞ 0 m ud

  20. Columbia plot: direct search of PT / scaling ∞ 1st order physical pt. m s 1st order crossover ∞ 0 m ud

  21. Columbia plot: direct search of PT / scaling ∞ 1st order N f =2+1 or 3 physical pt. either • m s no PT found • 1st order region • shrinks as a → 0 • 1st order crossover with both staggered and Wilson ∞ 0 m ud or even disappear ? • for more information see eg • Meyer Lattice 2015 • Ding Lattice 2016 • de Forcrand • “Surprises in the Columbia plot” (Lapland talk 2018)

  22. Columbia plot: direct search of PT / scaling ∞ 1st order N f =2+1 or 3 physical pt. either • m s no PT found • 1st order region • shrinks as a → 0 • 1st order crossover with both staggered and Wilson ∞ 0 m ud or even disappear ? • for more information see eg • Understanding of the diagram being changed a lot Meyer Lattice 2015 • Ding Lattice 2016 • de Forcrand • “Surprises in the Columbia plot” (Lapland talk 2018)

  23. Why bother ? in relation with “extended symmetry” • spin-chiral symmetry for vector and scalar props. at high T • SU(4) ⊃ SU(2) L x SU(2) R x U(1) A • C. Rohrhofer et al., PRD17 [1707.01881] • C. Lang [1803.08693] • original discussion on this symmetry: Glozman et al • for the T=0 but low-mode subtracted Dirac operator •

  24. Why bother ? axion cosmology scenario may fail for U(1) A restoration • due to vanishing / suppressed topological susceptivility χ t | m=0 = 0 & d n χ t / dm n | m=0 = 0 Aoki-Fukaya-Tanigchi • ➡ χ t = 0 for small non-zero m OR ➡ exponential decay for T>T c � m q Λ 3 QCD , T < T c , χ t ( T ) ∼ QCD e − 2 c ( m q ) T 2 /T 2 c , T > T c , m 2 q Λ 2 h c ( m q ) → ∞ as m q → 0, s χ t = m 2 a f 2 axion mass and decay constant: • a ➡ axion window can possibly be closed Kitano-Yamada JHEP [1506.00370] • see also for θ = π QCD non-standard case with rich implications Di Vecchia et al. JHEP [1709.00731]

Recommend


More recommend