fast solution of optimal control problems with l1 cost
play

Fast Solution of Optimal Control Problems with L1 Cost Simon Le - PowerPoint PPT Presentation

Fast Solution of Optimal Control Problems with L1 Cost Simon Le Cleac'h and Zac Manchester Robotjc Exploratjon Lab Motivation Why L1-norm cost? Minimum-fuel, minimum-tjme Bang-ofg-bang control Contribution Solver: Fast


  1. Fast Solution of Optimal Control Problems with L1 Cost Simon Le Cleac'h and Zac Manchester Robotjc Exploratjon Lab

  2. Motivation Why L1-norm cost? • Minimum-fuel, minimum-tjme • Bang-ofg-bang control

  3. Contribution Solver: • Fast • Low-memory footprint • Nonlinear dynamics • State and control constraints Enables: • In fmight sofuware implementatjon • Embedded trajectory optjmizatjon

  4. Trajectory Optimization

  5. Trajectory Optimization

  6. Trajectory Optimization

  7. Trajectory Optimization Nonsmooth cost functjon

  8. ADMM Problem form: f, g are convex Augmented Lagrangian:

  9. ADMM Augmented Lagrangian: 3 optjmizatjon steps:

  10. ADMM Augmented Lagrangian: 3 optjmizatjon steps: Minimizatjon Minimizatjon Dual ascent

  11. Trajectory Optimization

  12. Method

  13. Method

  14. Method Augmented Lagrangian:

  15. Method Augmented Lagrangian: Cost

  16. Method Augmented Lagrangian: Penalty

  17. Method Augmented Lagrangian: Alternatjng Directjon Method of Multjpliers (ADMM) 1. 2. 3.

  18. Method Alternatjng Directjon Method of Multjpliers (ADMM) 1. Optjmal control step <=> LQR, closed-form solutjon

  19. Method Alternatjng Directjon Method of Multjpliers (ADMM) 2. Sofu-threhold step <=> closed-form solutjon

  20. Method Alternatjng Directjon Method of Multjpliers (ADMM) 3. Dual ascent step <=> closed-form solutjon

  21. Method Alternatjng Directjon Method of Multjpliers (ADMM) 1. Optjmal control step <=> LQR, closed-form solutjon 2. Sofu-threhold step <=> closed-form solutjon 3. Dual ascent step <=> closed-form solutjon

  22. Application Spacecrafu rendezvous problem • Minimum-fuel • Small satellite • Pathfjnder for Autonomous Navigatjon (PAN)

  23. Application Spacecrafu rendezvous problem • Nonlinear dynamics (drag etc.) • Unbounded control

  24. Results • Nonlinear dynamics (drag etc.) • Unbounded control

  25. Results • Nonlinear dynamics (drag etc.) • Unbounded control • Impulse control

  26. Results • Nonlinear dynamics (drag etc.) • Bounded control

  27. Results • Nonlinear dynamics (drag etc.) • Bounded control • Bang-ofg-bang

  28. Results

  29. Spacecraft Rendezvous L1 cost: Bang-ofg-bang

  30. Spacecraft Rendezvous Quadratjc cost: smooth control

  31. Conclusions Solver: for L1 control cost problem. • Fast and low-memory footprint • Broad range of applicatjons in astrodynamics Enables: • In fmight sofuware implementatjon • Small satellite rendezvous maneuver

  32. Questions? simonlc@stanford.edu rexlab.stanford.edu

  33. Algorithm

Recommend


More recommend