Fast Solution of Optimal Control Problems with L1 Cost Simon Le Cleac'h and Zac Manchester Robotjc Exploratjon Lab
Motivation Why L1-norm cost? • Minimum-fuel, minimum-tjme • Bang-ofg-bang control
Contribution Solver: • Fast • Low-memory footprint • Nonlinear dynamics • State and control constraints Enables: • In fmight sofuware implementatjon • Embedded trajectory optjmizatjon
Trajectory Optimization
Trajectory Optimization
Trajectory Optimization
Trajectory Optimization Nonsmooth cost functjon
ADMM Problem form: f, g are convex Augmented Lagrangian:
ADMM Augmented Lagrangian: 3 optjmizatjon steps:
ADMM Augmented Lagrangian: 3 optjmizatjon steps: Minimizatjon Minimizatjon Dual ascent
Trajectory Optimization
Method
Method
Method Augmented Lagrangian:
Method Augmented Lagrangian: Cost
Method Augmented Lagrangian: Penalty
Method Augmented Lagrangian: Alternatjng Directjon Method of Multjpliers (ADMM) 1. 2. 3.
Method Alternatjng Directjon Method of Multjpliers (ADMM) 1. Optjmal control step <=> LQR, closed-form solutjon
Method Alternatjng Directjon Method of Multjpliers (ADMM) 2. Sofu-threhold step <=> closed-form solutjon
Method Alternatjng Directjon Method of Multjpliers (ADMM) 3. Dual ascent step <=> closed-form solutjon
Method Alternatjng Directjon Method of Multjpliers (ADMM) 1. Optjmal control step <=> LQR, closed-form solutjon 2. Sofu-threhold step <=> closed-form solutjon 3. Dual ascent step <=> closed-form solutjon
Application Spacecrafu rendezvous problem • Minimum-fuel • Small satellite • Pathfjnder for Autonomous Navigatjon (PAN)
Application Spacecrafu rendezvous problem • Nonlinear dynamics (drag etc.) • Unbounded control
Results • Nonlinear dynamics (drag etc.) • Unbounded control
Results • Nonlinear dynamics (drag etc.) • Unbounded control • Impulse control
Results • Nonlinear dynamics (drag etc.) • Bounded control
Results • Nonlinear dynamics (drag etc.) • Bounded control • Bang-ofg-bang
Results
Spacecraft Rendezvous L1 cost: Bang-ofg-bang
Spacecraft Rendezvous Quadratjc cost: smooth control
Conclusions Solver: for L1 control cost problem. • Fast and low-memory footprint • Broad range of applicatjons in astrodynamics Enables: • In fmight sofuware implementatjon • Small satellite rendezvous maneuver
Questions? simonlc@stanford.edu rexlab.stanford.edu
Algorithm
Recommend
More recommend