Erbil, Kurdistan 0 Factoring integers,..., RSA Lecture in Number Theory College of Sciences Department of Mathematics University of Salahaddin Debember 4, 2014 Factoring integers and Producing primes Francesco Pappalardi Universit` a Roma Tre
Erbil, Kurdistan 1 Factoring integers,..., RSA How large are large numbers? 10 15 ☞ number of cells in a human body: 10 80 ☞ number of atoms in the universe: 10 120 ☞ number of subatomic particles in the universe: 10 27 ☞ number of atoms in a Human Brain: 10 26 ☞ number of atoms in a cat: Universit` a Roma Tre
Erbil, Kurdistan 2 Factoring integers,..., RSA RSA 2048 = 25195908475657893494027183240048398571429282126204 032027777137836043662020707595556264018525880784406918290641249 515082189298559149176184502808489120072844992687392807287776735 971418347270261896375014971824691165077613379859095700097330459 748808428401797429100642458691817195118746121515172654632282216 869987549182422433637259085141865462043576798423387184774447920 739934236584823824281198163815010674810451660377306056201619676 256133844143603833904414952634432190114657544454178424020924616 515723350778707749817125772467962926386356373289912154831438167 899885040445364023527381951378636564391212010397122822120720357 RSA 2048 is a 617 (decimal) digit number http://www.rsa.com/rsalabs/challenges/factoring/numbers.html/ Universit` a Roma Tre
Erbil, Kurdistan 3 Factoring integers,..., RSA p, q ≈ 10 308 RSA 2048 = p · q , PROBLEM: Compute p and q Price offered on MArch 18, 1991: 200.000 US$ ( ∼ 232 . 700 . 000 Iraq Dinars)!! Theorem. If a ∈ N ∃ ! p 1 < p 2 < · · · < p k primes s.t. a = p α 1 1 · · · p α k k Regrettably: RSAlabs believes that factoring in one year requires: number computers memory 1 . 6 × 10 15 RSA 1620 120 Tb RSA 1024 342 , 000 , 000 170 Gb RSA 760 215,000 4Gb. Universit` a Roma Tre
Erbil, Kurdistan 4 Factoring integers,..., RSA http://www.rsa.com/rsalabs/challenges/factoring/numbers.html Challenge Number Prize ($US) RSA 576 $10,000 RSA 640 $20,000 RSA 704 $30,000 RSA 768 $50,000 RSA 896 $75,000 RSA 1024 $100,000 RSA 1536 $150,000 RSA 2048 $200,000 Universit` a Roma Tre
Erbil, Kurdistan 4 Factoring integers,..., RSA http://www.rsa.com/rsalabs/challenges/factoring/numbers.html Numero Premio ($US) Status RSA 576 $10,000 Factored December 2003 RSA 640 $20,000 Factored November 2005 RSA 704 $30,000 Factored July, 2 2012 RSA 768 $50,000 Factored December, 12 2009 RSA 896 $75,000 Not factored RSA 1024 $100,000 Not factored RSA 1536 $150,000 Not factored RSA 2048 $200,000 Not factored The RSA challenges ended in 2007. RSA Laboratories stated: “ Now that the industry has a considerably more advanced understanding of the cryptanalytic strength of common symmetric-key and public-key algorithms, these challenges are no longer active. ” Universit` a Roma Tre
Erbil, Kurdistan 5 Factoring integers,..., RSA Famous citation!!! A phenomenon whose probability is 10 − 50 never happens, and it will never be observed. - ´ Emil Borel (Les probabilit´ es et sa vie) Universit` a Roma Tre
Erbil, Kurdistan 6 Factoring integers,..., RSA History of the “Art of Factoring” ➳ 220 BC Greeks (Eratosthenes of Cyrene ) ➳ 1730 Euler 2 2 5 + 1 = 641 · 6700417 ➳ 1750–1800 Fermat, Gauss (Sieves - Tables) ➳ 1880 Landry & Le Lasseur: 2 2 6 + 1 = 274177 × 67280421310721 ➳ 1919 Pierre and Eug` ene Carissan (Factoring Machine) ➳ 1970 Morrison & Brillhart 2 2 7 + 1 = 59649589127497217 × 5704689200685129054721 ➳ 1982 Quadratic Sieve QS (Pomerance) � Number Fields Sieve NFS ➳ 1987 Elliptic curves factoring ECF (Lenstra) Universit` a Roma Tre
Erbil, Kurdistan 7 Factoring integers,..., RSA History of the “Art of Factoring” 220 BC Greeks (Eratosthenes of Cyrene) Universit` a Roma Tre
Erbil, Kurdistan 8 Factoring integers,..., RSA History of the “Art of Factoring” 1730 Euler 2 2 5 + 1 = 641 · 6700417 Universit` a Roma Tre
Erbil, Kurdistan 9 Factoring integers,..., RSA How did Euler factor 2 2 5 + 1 ? Proposition Suppose p is a prime factor of b n + 1 . Then 1. p is a divisor of b d + 1 for some proper divisor d of n such that n/d is odd or 2. p − 1 is divisible by 2 n . Application: Let b = 2 and n = 2 5 = 64. Then 2 2 5 + 1 is prime or it is divisible by a prime p such that p − 1 is divisible by 128. Note that 1 + 1 × 128 = 3 × 43, 1 + 2 × 128 = 257 is prime, 1 + 3 × 128 = 5 × 7 × 11, 1 + 4 × 128 = 3 3 × 19 and 1 + 5 · 128 = 641 is prime. Finally 2 2 5 + 1 = 4294967297 = 6700417 641 641 Universit` a Roma Tre
Erbil, Kurdistan 10 Factoring integers,..., RSA History of the “Art of Factoring” 1730 Euler 2 2 5 + 1 = 641 · 6700417 Universit` a Roma Tre
Erbil, Kurdistan 11 Factoring integers,..., RSA History of the “Art of Factoring” 1750–1800 Fermat, Gauss (Sieves - Tables) Universit` a Roma Tre
Erbil, Kurdistan 12 Factoring integers,..., RSA History of the “Art of Factoring” 1750–1800 Fermat, Gauss (Sieves - Tables) Factoring with sieves N = x 2 − y 2 = ( x − y )( x + y ) Universit` a Roma Tre
Erbil, Kurdistan 13 Factoring integers,..., RSA Carissan’s ancient Factoring Machine Figure 1: Conservatoire Nationale des Arts et M´ etiers in Paris http://www.math.uwaterloo.ca/ shallit/Papers/carissan.html Universit` a Roma Tre
Erbil, Kurdistan 14 Factoring integers,..., RSA Figure 2: Lieutenant Eug` ene Carissan 225058681 = 229 × 982789 2 minutes 3450315521 = 1409 × 2418769 3 minutes 3570537526921 = 841249 × 4244329 18 minutes Universit` a Roma Tre
Erbil, Kurdistan 15 Factoring integers,..., RSA State of the “Art of Factoring” 1970 - John Brillhart & Michael A. Morrison 2 2 7 + 1 = 59649589127497217 × 5704689200685129054721 Universit` a Roma Tre
Erbil, Kurdistan 16 Factoring integers,..., RSA State of the “Art of Factoring” F n = 2 (2 n ) + 1 is called the n –th Fermat number Up to today only from F 0 to F 11 are factores. It is not known the factorization of F 12 = 2 2 12 + 1 Universit` a Roma Tre
Erbil, Kurdistan 17 Factoring integers,..., RSA State of the “Art of Factoring” 1982 - Carl Pomerance - Quadratic Sieve Universit` a Roma Tre
Erbil, Kurdistan 18 Factoring integers,..., RSA State of the “Art of Factoring” 1987 - Hendrik Lenstra - Elliptic curves factoring Universit` a Roma Tre
Erbil, Kurdistan 19 Factoring integers,..., RSA Contemporary Factoring ❶ 1994, Quadratic Sieve (QS): (8 months, 600 volunteers, 20 nations) D.Atkins, M. Graff, A. Lenstra, P. Leyland RSA 129 = 114381625757888867669235779976146612010218296721242362562561842935706 935245733897830597123563958705058989075147599290026879543541 = = 3490529510847650949147849619903898133417764638493387843990820577 × 32769132993266709549961988190834461413177642967992942539798288533 ❷ (February 2 1999), Number Field Sieve (NFS): (160 Sun, 4 months) RSA 155 = 109417386415705274218097073220403576120037329454492059909138421314763499842 88934784717997257891267332497625752899781833797076537244027146743531593354333897 = = 102639592829741105772054196573991675900716567808038066803341933521790711307779 × 106603488380168454820927220360012878679207958575989291522270608237193062808643 ❸ (December 3, 2003) (NFS): J. Franke et al. (174 decimal digits) RSA 576 = 1881988129206079638386972394616504398071635633794173827007633564229888597152346 65485319060606504743045317388011303396716199692321205734031879550656996221305168759307650257059 = = 398075086424064937397125500550386491199064362342526708406385189575946388957261768583317 × 472772146107435302536223071973048224632914695302097116459852171130520711256363590397527 ❹ Elliptic curves factoring: introduced by H. Lenstra. suitable to detect small factors (50 digits) all have ”sub–exponential complexity” Universit` a Roma Tre
Recommend
More recommend