Exploring the time dependent structural rearrangements of SOX2 locus during transdifferentiation Marc A. Marti-Renom Structural Genomics Group (ICREA, CNAG-CRG) http://marciuslab.org http://3DGenomes.org http://cnag.crg.eu
Resolution Gap Marti-Renom, M. A. & Mirny, L. A. PLoS Comput Biol 7, e1002125 (2011) Knowledge IDM INM DNA length 10 10 10 10 nt Volume 10 10 10 10 10 μ m Time 10 10 10 10 10 10 10 10 s Resolution 10 10 10 μ
Hybrid Method Baù, D. & Marti-Renom, M. A. Methods 58, 300—306 (2012). Experiments A Chr.18 -Pg B C D Computation
Chromosome Conformation Capture Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Science, 295(5558), 1306—1311. Lieberman-Aiden, E., et al. (2009). Science, 326(5950), 289—293.
Restraint-based Modeling Baù, D. & Marti-Renom, M. A. Methods 58, 300—306 (2012). Chromosome structure determination 3C-based data -Pg Biomolecular structure determination 2D-NOESY data
http://3DGenomes.org Serra, F., Baù, D. et al. PLOS CB (2017) FastQ files to Maps Map analysis i+1 i i+2 Model building i+n Model analysis
previous applications... Baù, D. et al. Nat Struct Mol Biol (2011) Umbarger, M. A. et al. Mol Cell (2011) Le Dily, F. et al. Genes & Dev (2014) Trussart M. et al. Nature Communication (2017) Cattoni et al. Nature Communication (2017)
Interplay: topology, gene expression & chromatin Stadhouders, R., Vidal, E. et al. (2017) Nature Genetics, in press.
Transcription factors dictate cell fate Graf & Enver (2009) Nature iPS cells C/EBPa Transcription factors (TFs) determine cell identity through gene regulation Normal ‘forward’ differentiation Cell fates can be converted by enforced TF expression Transdifferentiation or reprogramming
Interplay: topology, gene expression & chromatin Stadhouders, R., Vidal, E. et al. (2017) Nature Genetics, in press.
Reprogramming from B to PSC Stadhouders, R., Vidal, E. et al. (2017) Nature Genetics, in press. Oct4 GFP + β -est. +Doxy. OSKM TetO C/EBP α OSKM rtTA Rosa26 18h B cell B α D2 D4 D6 D8 PSC somatic B iPS Nanog Sox2 Oct4 1.2 Gene expression (log2) Ebf1 expression (PSC=1) expression (log2) 1 8 8 Sox2 0.8 Nanog 0.6 4 4 0.4 Oct4 0.2 0 0 0 B B α D2 D4 D6 D8 PSC B B α D2 D4 D6 D8 PSC B B α D2 D4 D6 D8 PSC
Birth of a TAD border upstream of Sox2 Stadhouders, R., Vidal, E. et al. (2017) Nature Genetics, in press. Border strength
Sox2 overall topological changes Stadhouders et al. Nature Genetics , in press
TADbit modeling of SOX2 from B cells Hi-C SE SOX2 Optimal IMP parameters lowfreq=0 , upfreq=1 , maxdist=200nm, dcutoff=125nm, particle size=50nm (5kb)
Hi-C maps of reprogramming from B to PSC The SOX2 locus Nanog Sox2 Oct4 1.2 expression (PSC=1) 1 0.8 0.6 0.4 0.2 0 B B α D2 D4 D6 D8 PSC B cell B α D2 D4 D6 D8 PSC
Hi-C maps of reprogramming from B to PSC The SOX2 locus B cell B α D2 D4 D6 D8 PSC How does these structural rearrangements interplay with the transcription activity? What are the main drivers of structural transitions?
Models of reprogramming from B to PSC The SOX2 locus B cell B α D2 D4 D6 D8 PSC
Model assessment Hi-C int Correlation Spearman correlation between contact maps Contacts 0.8 Try to use reproducibility score! 0.75 IN HiC-Spector! compare the first 20 0.65 eigenvectros 0.7 0.65 0.55 0.6 0.55 Models of B 0.5 B B α D2 D4 D6 D8 ES Cell stage
Model assessment Hi-C int Correlation Spearman correlation between contact maps Contacts 0.8 0.75 0.65 0.7 0.65 0.55 0.6 Models of B Models of Ba 0.55 Models of D2 Models of D4 Models of D6 Models of D8 Models of ES 0.5 B B α D2 D4 D6 D8 ES Cell stage
Model assessment Hi-C int Correlation Spearman correlation between contact maps Contacts 0.8 0.75 0.65 0.7 0.65 0.55 0.6 Models of B Models of Ba 0.55 Models of D2 Models of D4 Models of D6 Models of D8 Models of ES 0.5 B B α D2 D4 D6 D8 ES Cell stage
Model assessment Hi-C int Correlation Spearman correlation between contact maps Contacts Hi-C interactions 0.8 0.75 0.65 0.7 Models contacts 0.65 0.55 0.6 Models of B Models of Ba 0.55 Models of D2 Models of D4 Models of D6 Models of D8 Models of ES 0.5 B B α D2 D4 D6 D8 ES Cell stage
TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus B cell B α D2 D4 D6 D8 PSC
TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus B cell B α D2 D4 D6 D8 PSC Harmonic HarmonicLowerBound
TADdyn: from time-series Hi-C maps to dynamic restraints The SOX2 locus B cell B α D2 D4 D6 D8 PSC Harmonic HarmonicLowerBound Transition Stable Vanishing Raising B -> B 𝛽 18,612 6,984 7,290 B 𝛽 -> D2 18,512 7,390 6,687 D2 -> D4 18,369 6,830 6,893 D4 -> D6 18,971 6,291 7,289 D6 -> D8 20,167 6,093 6,250 D8 -> ES 20,679 5,738 6,173
SOX2 locus structural changes from B to PSC Contacts SE SOX2
SOX2 locus structural changes from B to PSC Contacts SE SOX2
SOX2 locus structural changes from B to PSC TAD borders CTCF 0.2 35.25 0 Signi fj cant insulation score -0.2 Genomic coordinates (Mb) -0.4 35.00 -0.6 -0.8 34.75 -1 -1.2 34.50 34.25 34.00
SOX2 locus structural changes from B to PSC TAD borders CTCF 0.2 35.25 0 Signi fj cant insulation score -0.2 Genomic coordinates (Mb) -0.4 35.00 -0.6 -0.8 34.75 -1 -1.2 34.50 34.25 34.00
SOX2 locus structural changes from B to PSC Distance to regulatory elements ATAC-Seq 200 35.25 Distance to Sox2 locus (nm) 150 Genomic coordinates (Mb) 35.00 100 34.75 50 0 34.50 34.25 34.00
SOX2 locus structural changes from B to PSC Distance to regulatory elements ATAC-Seq 200 35.25 Distance to Sox2 locus (nm) 150 Genomic coordinates (Mb) 35.00 100 34.75 50 0 34.50 34.25 34.00
SOX2 locus structural changes from B to PSC Structural exposure 1 Accessibility of Sox2 particle (a.u.) Exposure of Sox2 particle (a.u.) 0.8 0.6 0.4 0.2 0
SOX2 locus structural changes from B to PSC Structural exposure 1 Exposure of Sox2 particle (a.u.) Accessibility of Sox2 particle (a.u.) 0.8 0.6 0.4 0.2 0
SOX2 locus dynamics changes from B to PSC SOX2 displacement
SOX2 locus dynamics changes from B to PSC SOX2 displacement
SOX2 locus dynamics changes from B to PSC SOX2 displacement Two dimensional trajectories and area explored over 50s of the CCND1 locus recored before -E2 and after +E2 activation. Germier ,T., et al, BIophys J. 113, 1383—1394 (2017).
A “cage” model for transcriptional activation The Sox2 transcriptional activation is preceded by major structural rearrangements involving the formation of a small “cage” domain.
http://marciuslab.org http://3DGenomes.org http://cnag.crg.eu Marco Di Stefano David Castillo Yasmina Cuartero Irene Farabella Silvia Galan Mike Goodstadt Francesca Mugianesi Julen Mendieta Juan Rodriguez François Serra Paula Soler Aleksandra Sparavier Yannick Spill In collaboration with Ralph Stadhouders (Erasmus MC) and Thomas Graf (CRG) .: Our current sponsors :.
Recommend
More recommend