explicit methods in the theory of jacobi forms of lattice
play

Explicit methods in the theory of Jacobi forms of lattice index and - PowerPoint PPT Presentation

Explicit methods in the theory of Jacobi forms of lattice index and over number fields Nils Skoruppa Universit at Siegen September 29, 2015 ICERM Modular Forms and Curves of Low Genus: Computational Aspects Sept 28 October 2, 2015


  1. Explicit methods in the theory of Jacobi forms of lattice index and over number fields Nils Skoruppa Universit¨ at Siegen September 29, 2015 ICERM Modular Forms and Curves of Low Genus: Computational Aspects Sept 28 – October 2, 2015 Nils Skoruppa Explicit methods September 29, 2015 1 / 23

  2. Jacobi forms over Q : Basic example. I Jacobi’s theta function � − 4 r 2 r � � 8 ζ ϑ ( τ, z ) = q 2 r r ∈ Z 1 1 2 − ζ − 1 2 � � 1 − q n �� 1 − q n ζ 1 − q n ζ − 1 � 8 � � �� = q ζ n > 0 Notation q = e 2 π i τ , ζ = e 2 π iz for τ ∈ H , z ∈ C Theorem 2 ( ε 3 ) . ϑ ∈ J 1 2 , 1 Nils Skoruppa Explicit methods September 29, 2015 2 / 23

  3. Jacobi forms over Q : Basic example. II Automorphic Properties of ϑ ( τ, z ) � a b � For all A = in SL(2 , Z ) and all integers λ, µ : c d � − c 1 2 z 2 � 1 z � � 2 = ζ 8 ( A ) ϑ ( τ, z ) ϑ A τ, e ( c τ + d ) c τ + d c τ + d � 2 λ 2 + 2 λ 1 � � 2 ( λ + µ ) 2 � τ 1 1 � � ϑ τ, z + λτ + µ e 2 z = e ϑ ( τ, z ) 1 2 = weight, 1 2 = index Nils Skoruppa Explicit methods September 29, 2015 3 / 23

  4. Jacobi forms over Q I Theorem (Zagier-S.) For every m > 0 and (integral) k ≥ 2 , there exist Hecke-equivariant isomorphisms ≃ → M − J k , m − 2 k − 2 ( m ) , where M − � � 2 k − 2 ( m ) is a certain subspace of M 2 k − 2 Γ 0 ( m ) , containing all newforms whose L-series have a minus sign in their functional equation. Nils Skoruppa Explicit methods September 29, 2015 4 / 23

  5. Jacobi forms over Q II Let f be a newform in M − 2 k − 2 ( m ), let � c φ ( n , r ) q n ζ r φ = 4 mn − r 2 ≥ 0 be its associated Jacobi form. Theorem (Waldpurger,Gross-Kohnen-Zagier) For every negative fundamental discriminant D ≡ � mod 4 m, say, D = r 2 − 4 mn, one has | c φ ( n , r ) | 2 = const ( k , m , D ) L ( f ⊗ χ D , k − 1) . | φ | 2 | f | 2 Nils Skoruppa Explicit methods September 29, 2015 5 / 23

  6. Computation of Jacobi forms over Q Generating explicit formulas for Jacobi forms is as easy as for elliptic modular forms (over congruence subgroups) — in fact, easier. Methods for generating Jacobi forms 1 Theta blocks, 2 Taylor expansion around z = 0, 3 Modular symbols, 4 Vector valued modular forms. 5 Invariants of Weil representations and pullback. Nils Skoruppa Explicit methods September 29, 2015 6 / 23

  7. Computation via theta blocks The first elliptic curve over Q of positive rank is E : y 2 + y = x 3 − x conductor = 37 . The associated newform f (so that L ( E , s ) = L ( f , s )) is f E = q − 2 q 2 − 3 q 3 + 2 q 4 − 2 q 5 + 6 q 6 − q 7 + 6 q 9 + O ( q 10 ) . The associated Jacobi form is a theta block: φ E = ϑ a ϑ b ϑ c ϑ d ϑ a + b ϑ b + c ϑ c + d ϑ a + b + c ϑ b + c + d ϑ a + b + c + d /η 6 , where ( a , b , c , d ) = (1 , 1 , 1 , 2), and where ϑ a ( τ, z ) = ϑ ( τ, az ). Recall � − 4 r 2 1 2 − ζ − 1 1 r � 2 � � 1 − q n ζ − 1 � � 8 ζ 2 = q 8 � � 1 − q n �� 1 − q n ζ �� ϑ ( τ, z ) = q ζ . r r ∈ Z n > 0 Nils Skoruppa Explicit methods September 29, 2015 7 / 23

  8. Computation via periods Example The elliptic curve of congruent numbers: C : y 2 = x ( x − D )( x + D ). Associated Jacobi form φ C is in (spans) J cusp , + , 2 , 32 c φ ( n , r ) = ν + ( r 2 − 128 n , r ) − ν − ( r 2 − 128 n , r ), For D > 0, D ≡ r 2 mod 128: � ( a , b , c ) ∈ Z 3 : b 2 − 4 ac = D , b 2 < D , ǫ a > 0 , ν ǫ ( D , r ) = # a ≡ 3 b + r mod 32 , 3 c ≡ b − r � mod 32 . 2 2 Remark Slightly cheated: we used skew-holomorphic Jacobi forms. Nils Skoruppa Explicit methods September 29, 2015 8 / 23

  9. A first long-term project Goal Develop a similar theory for Jacobi forms of several z -variables (which we shall call “Jacobi forms of lattice index”). Motivation Seemingly complicated Jacobi forms are pullbacks of simple universal Jacobi forms of several variables (e.g. the m = 37 example and infinitely many others.) This yields a unified arithmetic theory for all kind of (elliptic) vector valued modular forms, namely: Theorem (S. 2012) Any given space of elliptic modular forms of vector valued elliptic modular forms of integral or half integral weight on a congruence subgroup can be naturally embedded into a space of Jacobi forms of integral weight on the full modular group. Nils Skoruppa Explicit methods September 29, 2015 9 / 23

  10. Definitions, notations Definition (Even integral positive) Lattice L = ( L , β ): Finite free Z -module L, symmetric, positive definite Z -bilinear map β : L × L → Z and β ( x ) := 1 2 β ( x , x ) integral. Definition J k , L ( k integral): space of holomorphic φ ( τ, z ) ( τ ∈ H , z ∈ C ⊗ Z L ) such that: τ − k = φ ( τ, z ), � � φ ( τ + 1 , z ) = φ ( − 1 /τ, z /τ ) e − β ( z ) /τ � � φ ( τ, z + τ x + y ) e τβ ( x ) + β ( z , x ) = φ ( τ, z ) ( x , y ∈ L ), φ holomorphic at infinity. Nils Skoruppa Explicit methods September 29, 2015 10 / 23

  11. Remarks Fourier expansion φ is called holomorphic at infinity if its Fourier expansion is of the form c φ ( n , r ) q n e � � � φ = β ( r , z ) . n ∈ Z , r ∈ L ♯ n ≥ β ( r ) ( L ♯ = { y ∈ Q ⊗ Z L : β ( y , L ) ⊆ Z } ) Proposition For fixed D ≤ 0 , the map C φ ( D , r ) := c φ ( β ( r ) − D , r ) for D ≡ β ( r ) mod Z , and C φ ( D , r ) := 0 otherwise, depends only on r + L. Remark Let Z (2 m ) := ( Z , ( x , y ) �→ 2 mxy ). Then J k , Z (2 m ) equals “classical” J k , m . Nils Skoruppa Explicit methods September 29, 2015 11 / 23

  12. Examples A simple effective construction method Let α = ( α 1 , . . . , α m ) be an isometric embedding of L into Z m . Then, for sufficiently large (possibly negative) t ≡ − 3 m mod 24, the function ϑ ( τ, α 1 ( z )) · · · ϑ ( τ, α m ( z )) η t defines an element of J k , L . (If z j are coordinate functions with respect to a Z -basis of L , the α j ( z ) become linear forms in z j with integral coefficients.) Examples ϑ ( τ, z 1 ) ϑ ( τ, z 2 ) ϑ ( τ, z 1 + z 2 ) η 15 ∈ J 9 , A 2 , ϑ ( τ, z 1 ) ϑ ( τ, z 2 ) 3 ϑ ( τ, z 1 + z 2 ) η 9 ∈ J 7 , ” [ 2 1 1 4 ] ” , ϑ ( τ, z 1 ) ϑ ( τ, z 2 ) ϑ ( τ, z 1 − z 2 ) ϑ ( τ, z 1 + z 2 ) ϑ ( τ, z 1 + 2 z 2 ) ϑ ( τ, 2 z 1 + z 2 ) /η ( τ ) 4 ∈ J 1 , ” [ 8 4 4 8 ] ” . Nils Skoruppa Explicit methods September 29, 2015 12 / 23

  13. Basic features of the theory What is known dim J k , L = explicit formula (for all k , including singular or critical) � k ∈ Z J k , L is finite free C [ E 4 , E 6 ]-module with explicit Hilber-Poincar´ e p ( x ) series (1 − x 4 )(1 − x 6 ) . ( p polynomial of weight < 12, coefficients give number of generators in a given weight.) Various methods for generating explicit closed formulas for Jacobi forms: ⊗ -products ( ≈ orthogonal sums of lattices), 1 pull-backs ( ≈ isometric maps between lattices), 2 Taylor expansion in around z = 0 yields J k , L as finite direct sum of 3 spaces of quasi-modular forms, Forms of singular ( k = n 2 ) and critical weight ( k = n +1 2 ) are in 1–1 4 correspondence with invariants of Weil representations. Nils Skoruppa Explicit methods September 29, 2015 13 / 23

  14. Hecke operators: odd rank Theorem (Ajouz-S. 2015) Let L be a lattice of odd rank n, level N, discriminant n − 1 2 2 det( L ) , and let φ be a Jacobi form in J k , L . For a positive ∆ = ( − 1) integer ℓ , relatively prime to N, let � � � T ( ℓ ) φ := C T ( ℓ ) ( D , r ) e ( β ( r ) − D ) τ + β ( r , z ) , D ≤ 0 , r ∈ L ♯ D ≡ β ( r ) mod Z where a 2 k − n − 1 ρ ( D , a ) C φ ( ℓ 2 � a 2 D , ℓ a ′ r ) . C T ( ℓ ) φ ( D , r ) = a Here a is over all a | ℓ 2 , a 2 | ℓ 2 ND, a ′ a ≡ 1 mod N, and ρ ( D , a ) equals � D ∆ / f 2 � if gcd( ND , a ) = f 2 , and it equals 0 otherwise. a / f 2 The application φ �→ T ( ℓ ) φ defines an endomorphism of J k , L . Nils Skoruppa Explicit methods September 29, 2015 14 / 23

  15. Hecke operators: even rank Theorem (Ajouz-S. 2015) n 2 det( L ) , Let L be a lattice of even rank n, level N, discriminant ∆ = ( − 1) and let φ be a Jacobi form in J k , L . For a positive integer ℓ , relatively prime to N, let � � � T ( ℓ ) φ := C T ( ℓ ) ( D , r ) e ( β ( r ) − D ) τ + β ( r , z ) , D ≤ 0 , r ∈ L ♯ D ≡ β ( r ) mod Z where � ∆ � C φ ( ℓ 2 � a k − n / 2 a 2 D , ℓ a ′ r ) . C T ( ℓ ) φ ( D , r ) = a a | ℓ 2 , ND The application φ �→ T ( ℓ ) φ defines an endomorphism of J k , L . Nils Skoruppa Explicit methods September 29, 2015 15 / 23

  16. L -series Theorem J k , L possesses a basis of simultaneous Hecke eigenforms for all ℓ (with gcd( ℓ, N ) = 1 ). Theorem Let φ be a simultaneous Hecke eigenform with eigenvalues λ ( ℓ ) , and let gcd( ℓ, N )=1 λ ( ℓ ) ℓ − s . Then one has, for odd rank n, L ( φ, s ) = � (1 − λ ( p ) p − s + p 2 k − n − 2 − 2 s ) − 1 , � L ( φ, s ) = p �| N and, for even rank n, with λ ′ ( p ) = λ ( p ) − p k − n / 2 − 1 � � ∆ p � ∆ � L ( φ, s ) = L ( , s − k + n / 2 + 1) (1 − λ ′ ( p ) p − s + p 2( k − n / 2 − 1 − 2 s ) ) − 1 . � · ζ ( N ) (2 s − 2 k + n + 2) p �| N Nils Skoruppa Explicit methods September 29, 2015 16 / 23

Recommend


More recommend