experimental techniques for the study of small magnetic
play

Experimental techniques for the study of small magnetic objects - PowerPoint PPT Presentation

Experimental techniques for the study of small magnetic objects Olivier Fruchart Institut Nel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Nel, Grenoble, France Institut Nel, Grenoble , France. .


  1. Experimental techniques for the study of small magnetic objects Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France Institut Néel, Grenoble , France. . http://perso.neel.cnrs.fr/olivier.fruchart/

  2. Foreword  Large overview of characterization techniques. Therefore remains handwavy  Not all techniques currently used for nanoalloys (yet?)  Personal views on prospects  Experts in the audience: please interrupt any time  Non-experts in the audience: please interrupt any time Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.2 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  3. Nano  Sensitivity → Restricted amount of material  Spatial resolution → Single-object measurements → Characterize non-homogeneities  Depth sensitivity → Relevance of measurements → Volume versus surface properties Alloys  Chemical sensitivity  Spatial / depth resolution Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.3 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  4. TABLE OF CONTENTS (1/4) 1. Microscopy 2. Flux and direct local probes 3. Reciprocal space ∂ 2 f 1 α β µ α β = ' , ' ( ' , ' ) ∂ α ∂ β 2 ' ' M 4. Interactions in Hext β ’ assemblies α ’ Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.4 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  5. Lorentz microscopy – Fresnel mode Fresnel imaging mode Self-assembled fcc Co dots (vortex state)  Sensitive mainly to in-plane components of induction integrated over the sample’s + air thickness  Down to 5nm lateral resolution Collaboration:  Fresnel: fine resolution of domain walls and vortices P. Bayle-Guillemaud, A. Masseboeuf (CEA - Grenoble) Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.5 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  6. Lorentz microscopy – Foucault mode Foucault imaging mode FoV: 1500nm  Foucault: highlights domains  2D/3D vectorial maps of induction can be computed (also possible from series of focus Collaboration: P. Bayle-Guillemaud, A. Masseboeuf (CEA - Grenoble) Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.6 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  7. Lorentz microscopy - Holography Working principle Setup Phase-shift of electrons through matter  Computational procedure to retrieve the integrated map of induction  Compensation measurement needed to get rid of electrical contribution Courtesy: B. Warot-Fonrose, CEMES-Toulouse Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.7 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  8. Lorentz microscopy - Holography Vortex state (plane view) Single-domain (side view) Phase shift TEM Magnetization Micromagnetic Simulation Notice (both cases): Probes magnetization AND stray/internal fields E. Snoeck et al., Nano letters 8 (12), 4293 (2008) Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.8 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  9. Microscopies de Lorentz et holographie Features  Ultimate lateral resolution ~5nm  Minimum thickness: a few nm (best: holography) to ten nm  Rate (video).  Preparation (spreading, thinning) but versatile ('ex situ')  Sensitive to total induction: magnetization AND demagnetizing / stray fields  Probes the two in-plane components of induction; tiltable sample holder.  Field applied through dedicated Lorentz lens: mainly perpendicular Trends / future?  Micromagnetic simulations are required to fully benefit from the resolution  More combined HREM / Lorentz studies  'Environmental': moderate stand-alone external field; electrical connections etc.  Magnetization dynamics Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.9 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  10. SEMPA or spin-SEM SEMPA = Scanning Electron Microscope with Polarization Analysis Setup Polarization of secondary electrons Max values Fe: 50% Co: 35% Ni: 10% Spin detectors General feature: low efficiency or low energy window  Mott detector, LEED detector (W(001), Low-energy diffuse scattering R. Allenspach, Spin-polarized scanning electron microscopy, IBM J. Res. Develop. 44, 553 (2000) Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.10 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  11. SEMPA or spin-SEM Reconstruction of magnetization map Ex: 3ML Fe/Cu(001) Channel up Channel down Sum: topography Difference: Mz R. Allenspach, Spin-polarized scanning electron microscopy, IBM J. Res. Develop. 44, 553 (2000) Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.11 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  12. SEMPA or spin-SEM Example: Fe/W(001) Fields of view: 1.5 m m W. Wulfhekel et al., Phys. Rev. B 68, 144416/1-9 (2003) Features Prospects  Potential lateral resolution ~ 5nm  More in-field setups  Surface sensitive (<1nm)  See improved spin detectors  Low rate (scanning, efficiency of spin detectors)  Use energy filtering for  External field require special setups elemental sensitivity Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.12 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  13. SPLEEM SPLEEM = Spin-Polarized Low-Energy Electron Microscope = Spin-Polarized LEEM Working principle of LEEM Features  Full-field (video imaging rate)  5-10nm lateral resolution  Resolution of atomic steps  Some elemental or thickness resolution through working energy  High voltage column, however low energy electrons on sample See: growth of Fe/W(110) E. Bauer, Rep. Prog. Phys 57, 895 (1994) Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.13 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  14. SPLEEM Electron spin polarization and manipulation Features  Polarization over 80% achievable  3D manipulation of spin direction using combined magnetic/electrostatic optics  2D maps of magnetization with 3 components Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.14 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  15. SPLEEM SPLEEM: example 14MLFe/W(110), deposited at RT After annealing at 350°C Field of view: 7 m m N. Rougemaille & A. K. Schmid, J. Appl. Phys. 99, 08S502 (2006) Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.15 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  16. SPLEEM Features Prospects / future / dreams  UHV technique  Use dark-field imaging for magnetism?  Full-field (video imaging rate)  Investigate samples from ex situ?  5-10nm lateral resolution  Vertical resolution: atomic steps  Surface sensitivity  2D maps of magnetization with 3 components  Some elemental or thickness resolution through working energy  No applied field Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.16 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  17. XMCD magnetometry XMCD = X-ray Magnetic Circular Dichroism XMLD = X-ray Magnetic Linear Dichroism N i F e C o Intensity (a.u.) 700 800 900 Photon Energy (eV) Courtesy: W. Kuch Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.17 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  18. SPELEEM : PEEM + LEEM XMCD-PEEM: X-ray Magnetic Circular Dichroism PhotoElectron Emission Microscope Based on LEEM instrument: Low-Energy Electron Microscope e e LEEM e h ν e PEEM Note: simpler XMCD-PEEM instruments exist, not based on dual LEEM/PEEM. Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.18 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

  19. XMCD-PEEM - Examples Surface sensitivity For nanoparticles? Topography (LEEM) Co, diameter 8nm Height = 180nm Length = 1650 nm X-PEEM 1 µm Surface magnetization (XMCD-PEEM) 1 µm 1 µm SEM Magnetization sensititivity direction 1 µm R. Hertel et al., Phys. Rev. B 72, 214409 (2005) A. Fraile Rodriguez, JMMM316, 426 (2007) Olivier Fruchart – GdR Nanoalliages – Lyon – Jan. 2009 – p.19 Institut Néel, Grenoble, France , France Institut Néel, Grenoble http://perso.neel.cnrs.fr/olivier.fruchart/

Recommend


More recommend