experimental progress in strangeness nuclear physics
play

Experimental Progress in Strangeness Nuclear Physics Report from - PowerPoint PPT Presentation

Experimental Progress in Strangeness Nuclear Physics Report from Group A01&A02 T.Takahashi on behalf of Group A01 & A02 (KEK IPNS/J PARC Center) at NSMAT2016 (2016 Nov. 21) Contents Introduction Goal of Group A


  1. Experimental Progress in Strangeness Nuclear Physics — Report from Group A01&A02 — T.Takahashi on behalf of Group A01 & A02 (KEK IPNS/J ‐ PARC Center) at NSMAT2016 (2016 Nov. 21)

  2. Contents • Introduction • Goal of Group ‐ A projects • Knowledge on Hyperon Potential & Interaction in 2012 • Experimental Progress in SNP • Progress – 5 physics results • Detectors under construction • Hyperon Spectrometer & CATCH • Summary 2016/11/21 NSMAT2016 2

  3. Introduction 2016/11/21 NSMAT2016 3

  4. Joint project between experiments, observations, theories “ Science of Matter based World-best X -ray observatory on quarks ” two accelerators and ASTRO-H X-ray satellite Understand structure of n-star Theories Unstable beam factory RIBF Nuclear matter EOS r X-ray astronomy ⇒ n-star radius n-rich nuclei High Int. proto acc. Cold atoms J-PARC ⇒ properties of neutron matter Strangeness nuclear ⇒ Interaction of hyperons physics 2016/11/21 NSMAT2016 4

  5. A01: Interactions of multi ‐ strangeness systems Determine hyperon mixing in the inner core (  > 3  0 ) → EOS of high density matter Baryon fraction H dibaryon ?  co fraction correl elat ation (Unique in the world) Hyperon spectrometer ? E42   ( density )  int.  N →  int.   n  N int. TPC, S.C.magnet  nuclei from emulsion Sato, Imai,  hypernuclear spetrocopy Takahashi, (Unique in the world, 10 times improved) (Unique in the world) Naruki E05 E07 π - Takahashi, Naruki p 6  He Λ Λ 4 He Nakazawa 、 Sumihama 10 5 t H.takahashi  He Λ Ξ - 5 0 0 5 10μ m Peak in  invariant mass 6 Expected 12  He hypernucleus  C spectrum 2016/11/21 NSMAT2016 5

  6. A02: Strangeness in n-rich matter Sattered proton detector Determine hyperon mixing in  =2~3  0 p region where hyperons begin to appear Ultra-fast (x100) Fiber tr Tracking detector    Using MPPC LH2 targ 1)  + p s ( 1) Ca p scattering ( unique ) Mi Miwa, Ta Tamura ‐ >   n (    p) E40  coherent coupling p) in int. t. p/n PiID co    n n =>   exists in n ‐ star or not => Forward calorimeter  (2a)  spectroscopy of (2a) ? E13  n n fraction   n attractive  hypernuclei pernuclei (Unique method ) Ko Koike, Ta Tamura p of  N, N,  NN ‐ > Det Details ils of NN in int. E10 n (2b) (2b) n ‐ rich rich hypernuclei pernuclei (Unique method) Sak Sakagu guch chi, i, Aj Ajim imur ura, a, Fuk Fukuda uda  ‐ >  nn   n repulsive nn int. t. in in n ‐ rich rich en envir vironmen ent of  in n ‐ star  => Fr => Fractio tion of (3) K ‐ nuclear (3) nuclear bound bound state states Outa,, Suzuki ‐ > K bar bar N in int. t. in in mat matter E15, E27 p p => => K co condensation in in n sta star? ρ K - 2016/11/21 NSMAT2016 6

  7. Hyperon Potential & Interactions knowledge in 2012 (at Kick-off sympo.)  : U  =  30 MeV in normal (N  Z) matter at  0 Group ‐ A02 U  ? in neutron ‐ rich matter (S=  1)  (   ,   ,   ) :  N int. is repulsive but how much?  (   ,   ) :  nucleus is not well established U  =  14 MeV ? ( 12  Be) to be established B  =  2.6 MeV ? (   + 14 N  twin  ‐ nucleus)  interaction: Group ‐ A01 (S=  2)  B  = 0.67 ± 0.17 MeV from NAGARA event systematic data (A ‐ dependence) YY:   N: 2016/11/21 NSMAT2016 7

  8. Progress of SNP (2012 - present) 2016/11/21 NSMAT2016 8

  9. Progress (1) Discovery of Ξ nucleus ⇒ K.Nakazawa In the R&D of E07 Discovery of  ‐ Nucleus for the first time – KISO Event – In the test application of Overall Scanning Method, which is under R&D for In the test application of Overall Scanning Method, which is under R&D for incoming E07 Experiment, to the emulsion sample irradiated before, we found the incoming E07 Experiment, to the emulsion sample irradiated before, we found the event in which   is deeply bound in 14 N. This is the first evidence of  ‐ nucleus event in which   is deeply bound in 14 N. This is the first evidence of  ‐ nucleus   PTEP 033D02 (2015)   + 14 N → 10  Be(#1) + 5  He(#2) Newspaper ( 2015/1/19 ) Binding energy of   > 1.03 ± 0.18 MeV c.f. 0.17 MeV ( atomic orbit ) 3.87 ± 0.21 MeV if 10  Be is in ground state. Attractive  N interaction has been established. In E07, ~100 double ‐ strangeness events will be observed. ⇒ detailed information on S= ‐ 2 interaction 2016/11/21 NSMAT2016 9

  10. Start of E07 (Emulsion exp.) at K1.8 KURAMA (  260msr) installed at K1.8 momentum [GeV/c] K  K  Beam was exposed to the 18/118 emulsion stacks in June 2016. ⇒ K.Nakazawa ⇒ S.Hayakawa & M.Fujita (poster) 2016/11/21 NSMAT2016 10

  11. Progress (2): 12 C(K - ,K + ) Pilot data - - + + Missing mass p(K Missing mass p(K , K , K ) at 1.8 GeV/c ) at 1.8 GeV/c (K  ,K + ) Missing mass spectroscopy using SKS Counts /0.5 MeV 500    M  6 MeV (FWHM) 400 300 200 previous data at BNL ‐ AGS 100  M  14 MeV(FWHM) 0 1.3 1.3051.311.3151.321.3251.331.3351.341.3451.35 Missing Mass (GeV) ⇒ S.Kanatsuki P.Khaustov et al., PRC61 (2000)054603 2016/11/21 NSMAT2016 11

  12. Progress (3): Neutron-rich Λ nuclei — No observation of 6 Λ H (J-PARCE10) — H.Sugimura et al. PLB729(2014)39 6 Li (   , K + ) X 5 H +  t + 2n +  Glue like 0.0 role of  FINUDA 4  H + 2n ‐ 2.04 ‐ 2.31  coherent No peak structure coupling 6  H in bound/resonance region U.L. 1.2nb/sr (90%C.L.) Y.Akaishi et al. Phys.Rev.Lett.84(2000)3539 ⇒ R.Honda M.Agnello et al., FINUDA Collaboration PRL 108 (2012) 042501 2016/11/21 NSMAT2016 12

  13. Progress (4) Charge Symmetry Breaking in ΛN interaction  ‐ ray spectroscopy at J ‐ PARC E13 2015 Apr. ‐ May 4 He(K  ,   ) June counts/8 keV 2016/11/21 NSMAT2016 13 E  [MeV]

  14. Progress (4) Charge Symmetry Breaking in ΛN interaction T.O.Yamamoto et al. PRL115 (2015) 22501 • Large CSB of 1 + ‐ 0 + level spacing • spin ‐ dependent CSB • 1 + : small/no • 0 + : large • effect of  N ‐  N mixing ? Importance of Three ‐ Body Force ⇒ T.O.Yamamoto & S.Nagao decay  spectroscopy at MANI ‐ C 2.12 ± 0.01 stat. ± 0.09 syst. ⇒ S.Yang , M.Nakagawa ( other E13 results ) A.Esser et al. PRL114(2015)232501 2016/11/21 NSMAT2016 14

  15. Progress (5) Observation of “K - pp” Y.Ichikawa et al. PTEP 2015 21D01 J ‐ PARC E27 @K1.8  1405) doorway production at p  =1.69 GeV/c   d → K + X X →   p →  p → p    p +18 +30 B = 95 (stat.) (syst.) MeV  17  21  = 162 (stat.) (syst.) MeV +66 +87  78  45 Mx 2016/11/21 NSMAT2016 15

  16. Progress (5) Observation of “K - pp” J ‐ PARC E15 @K1.8BR K  3 He → X n at p K = 1.0 GeV/c X →  p E15 2nd Y.Sada et al. PTEP (2016) 051D01 2015 Nov. ‐ Dec. E15 1st 2013 May M[K+p+p] M[  +  +N] Two structures around M[K+p+p]!? ⇒ H.Outa 2016/11/21 NSMAT2016 16

  17. Large-Acceptance Hyperon Spectrometer for H-dibaryon Search (E42) K  C (diamond) → K + H X Hyperon Spectrometer H →  /   p /   p K1.8BS  → p   KURAMA Hyperon Spectrometer (HS)  S.C. Helmholtz magnet  1.0 T • large acceptance  TPC with 3 GEM layers • high ‐ rate tolerance GET readout system (K  ) beam  1MHz  TOF hodoscopes • good invariant mass  .... resolution  1MeV  Target inside TPC ⇒ J.K.Ahn S.H.Kim (poster) 2016/11/21 NSMAT2016 17

  18. Hyperon Spectrometer - S.C. Helmholtz magnet - Max field: 1.5 T @ 99.9A Field region: 500mm φ × 500mm Weight: 10 ton Conductive cooling by 2 GM cryocoolers KEK ‐ Tsukuba Campus (ERL building) All of necessary items (cryocoolers, monitors, power supply etc.) will be ready mid ‐ Dec. Then we will start cooling / excitation tests. 2016/11/21 NSMAT2016 18

  19. Hyperon Spectrometer - TPC - Full set of TPC was fabricated and arrived at J ‐ PARC (Oct.2016) The first cosmic ‐ ray event Beam test at ELPH ‐ Tohoku, Nov.7 ‐ 10 ⇒ S.H.Kim (poster) 2016/11/21 NSMAT2016 19

  20. CATCH for Σp Scattering Exp. ⇒ K.Miwa   p =   n interaction   (   )   (   ) Liq.H 2 Requirements Cylindrical Fiber Tracker (CFT) • Large acceptance for scattered proton 4 layers for  & 4 layers for UV • High rate tolerance MPPC readout  beam rate  10MHz • Kinematical identification of  p scattering BGO calorimeter energy and direction shaping amplifier + flash ADC readout 2016/11/21 NSMAT2016 20

  21. CATCH and its first application Construction of CATCH was just completed. Cylindrical Fiber Tracker (CFT) BGO calorimeter 1 st application to physics experiment p ‐ d elastic scattering and break ‐ up reaction experiment using CATCH will be performed at CYRIC ‐ Tohoku Jan.16 ‐ 17, 2017 ⇒ Y.Akazawa

  22. Beam power & K - intensity (K1.8BL) @38.6kW ( Nov. 2014 ) duration: 5.51 sec. spill length: 2.0 ‐ 2.1 sec. 4.43 × 10 13 ppp (optimal condition) 24kW 33kW 38.6kW • Design of 80kW (Apr.2014) (June 2014) (Nov. 2014) target was finished 53 kw x (s. f.) • R & D of >100kW (42kW) 41.5kW (next) (June 2015) target is underway (Dec. 2014) limited by T1 2016/11/21 NSMAT2016 22

Recommend


More recommend