experimental past and future
play

Experimental Past and Future Nadia Fomin University of Tennessee - PowerPoint PPT Presentation

Short-range NN interactions: Experimental Past and Future Nadia Fomin University of Tennessee April 12 th , 2017 The quick and the correlated : Progress towards understanding short-range NN interactions The quick and the correlated : Progress


  1. Short-range NN interactions: Experimental Past and Future Nadia Fomin University of Tennessee April 12 th , 2017

  2. The quick and the correlated : Progress towards understanding short-range NN interactions

  3. The quick and the correlated : Progress towards understanding short-range NN interactions

  4. Choosing an Appropriate Microscope Electron scattering is a great tool for studying subatomic structure: unlike a proton, it cannot be absorbed by the nucleus resolution varies with momentum transfer, allowing us to probe 1 the entire volume of the nucleus   q

  5. R. Hofstadter Nobel Prize 1961 "for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the structure of the nucleons"

  6. Collisions – Measured Cross sections Number of scattering centers Target flux x F   (   electrons trons of f energy gy E ) dN FN d θ    ' E E d Ω scatt ttered ered      2 2 2 2 Q q q     2 2 2 electrons of energy E’ 2 W M M Q 2 Q  dN x  2 M

  7. Thomas Jefferson National D Lin inacs cs Accelerator Facility El Electr tron n now with an 11 GeV beam Source ce A B C Experi rimenta ental Hall lls

  8. Shielded Detector Hut SOS HMS Hall C at Jefferson Lab Scattering Chamber Beam Line

  9. Hall A at Jefferson Lab

  10. High momentum nucleons - Short Range Correlations 3N SRC 2N SRC Nucleon momentum distribution in 12 C

  11. High momentum tails in A( e,e’p ) • E89-004: Measure of 3 He( e,e’p )d Measured far into high momentum • tail: Cross section is ~5-10x expectation Difficulty culty • High momentum pair can come from SRC (initial state) OR • Final State Interactions (FSI) and Meson Exchange Contributions (MEC) “slow” nucleons “fast” nucleons p p p p

  12. A( e,e’p ) 2 H( e,e’p ) Mainz PRC 78 054001 (2008) E =0.855 GeV θ = 45 o E’=0.657 GeV Q 2 =0.33 GeV 2 x=0.88 Unfortunately: FSI, MECs overwhelm the high momentum nucleons

  13. Past A( e,e’p ) experiments in Hall A

  14. High momentum nucleons - Short Range Correlations 3N SRC 2N SRC Nucleon momentum distribution in 12 C Try inclusive scattering! Select kinematics such that the initial nucleon momentum > k f

  15. ( x >1) x =1 ( x <1) QE Jlab E02-019 JLab, Hall C, 1998 Deuteriu m

  16. High momentum nucleons - Short Range Correlations 3N SRC 2N SRC   QE d      ( , ) ( ) d k dE S k E Arg  ei i ' d dE        2 2 * 2 2 Arg M M p M k  A A 1  2 1 d q  ( , ) F y q        d d ( ) 2 2 Z N ( ) M y q p n     Ok for for A=2 2 ( ) n k kdk | | y Deuterium Fomin et al, PRL 108 108 (2012)

  17. High momentum nucleons - Short Range Correlations 3N SRC 2N SRC Nucleon momentum distribution in 12 C C. Ciofi degli Atti and S. Simula , Phys. Rev. C 53 (1996).

  18. High momentum nucleons - Short Range Correlations 3N SRC 2N SRC Nucleon momentum distribution in 12 C Hig igh momentum entum fro rom SRCs Cs P>k ferm P> rmi Mean n C. Ciofi degli Atti and S. field fie ld Simula , Phys. Rev. C 53 (1996).

  19. Short Range Correlations • To experimentally probe SRCs, must be in the high-momentum region (x>1) • To measure the relative probability of finding a correlation, ratios of heavy to light 1.4<x<2 => 2 nucleon correlation nuclei are taken 2.4<x<3 => 3 nucleon correlation • In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios • L. L. Frankfurt and M. I. Strikman, Phys. Rept. 76, 215(1981). • J. Arrington, D. Higinbotham, G. Rosner, and A 1 M. Sargsian (2011), arXiv:1104.1196     2 2 ( , ) ( ) ( , ) x Q A a A x Q • L. L. Frankfurt, M. I. Strikman, D. B. Day, and j j M. Sargsian, Phys. Rev. C 48, 2451 (1993). j  1 • L. L. Frankfurt and M. I. Strikman, Phys. j Rept. 160, 235 (1988). A • C. C. degli Atti and S. Simula, Phys. Lett. B    2 ( ) ( , ) a A x Q 325, 276 (1994). 2 2 2 • C. C. degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996). A   2  ( ) ( , ) .... a A x Q 2 A  3 3 3 ( ) a 2 A  A D

  20. Before my time 1.4<x<2 => 2 nucleon correlation 2.4<x<3 => 3 nucleon correlation A 1     2 2 ( , ) ( ) ( , ) x Q A a A x Q j j j  1 j A    2 ( ) ( , ) a A x Q 2 2 2 A   2 ( ) ( , ) .... a A x Q 3 3 3

  21. Previous measurements 1.4<x<2 => 2 nucleon correlation 2.4<x<3 => 3 nucleon correlation Egiyan et al, Phys.Rev.C68, 2003 No observation of scaling for Q 2 <1.4 GeV 2

  22. E02-019: 2N correlations in A/D ratios Fomin et al, PRL 108 (2012) <Q 2 >=2.7 GeV 2 Jlab E02-019

  23.      2 2 Test scaling in x and Q 2 2 4 q M W M       2 1   2 M W   3 He 3 He 12 C 12 C 𝒒 𝒋− α i represents the light cone nuclear momentum fraction carried by the 𝜷 𝒋 = 𝒒 𝑩− /𝑩 constituent nucleon

  24. Look at nuclear dependence of NN SRCs N. Fomin et al, PRL 108 108 (2012) SRC 2 -1 a 2

  25. J.Seely, et al., PRL 103 103, 202301 (2009) Enter 9 Be EM EMC N. Fomin et al, PRL 108 108 (2012) SRC J. Seely, , et al., PRL103, , 202301 (2009) N. Fomin, , et al., PRL 108, , 092052 (2012) 2 -1 JA, A. Daniel, , D. Day, N. Fomin, , D. a 2 Gaske kell, , P. Solvignon non, , PRC RC 86, , 065204 (2012) O. Hen, , et al, PRC RC 85, , 047301 (2012) L. Weinstein, n, et al., PRL 106, , 052301 (2011)

  26. Discovery of the EMC effect • Goal was a measurement of the lepton-nucleon cross section at high Q 2 e - • To achieve statistical precision in a e - reasonable amount of time, an iron target was used, on the assumption that DIS  / A A  W 2 ≥( M n +M π ) 2 1  / 2 D M* A-1 meaning M A   A p n ( ) ( ) ( ) F x ZF x NF x 2 2 2 1      2 ( ) [ ( ) ( )] F x e q x q x 1 i i i 2 1  ( ) ( ) F x F x 1 2 2 x

  27. The EMC effect   A p n ( ) ( ) ( ) F x ZF x NF x 2 2 2 Nuclear dependence of the structure functions discovered 30+ years ago by the European Muon Collaboration (EMC effect) Nucleon structure functions are modified by the nuclear medium Depletion of high-x quarks for Shado dowing wing A>2 nuclei is not expected or EMC region understood Anti-Shado Shadowi wing ng Fermi mi mot otion on effec fects ts (pion n exc xces ess) s)

  28. Measurements before 2004 • NMC – extraction of F 2 n /F /F 2 p DMS -- 50 < Q 2 < 200 (GeV 2 ) • BCDM • HERMES – first measurement on 3 He • SLAC E139 – most precise large x data • Q 2 independent • Universal shape • Magnitude approximately scales with density

  29. Models of the EMC effect Nucleo eon n structur ure e is modified ied in the nuclear medium • Dynamical rescaling • Nucleon ‘swelling’ • Multiquark clusters (6q, 9q ‘bags’) or or Nuclea ear r structur ure e is modified ified due to hadronic effects • More detailed binding calculations • Fermi motion + binding • N-N correlations • Nuclear pions

  30. Nuclear Dependence of the EMC effect  Quark distributions are modified in nuclei  Modification scales with A 4 He ratio evaluated at x=0.6 4 He ratio evaluated at x=0.6

  31. Jlab E03-103 2 H 3 He 4 He 9 Be 12 C 27 Al* 63 Cu 197 Au

  32. Precision results on light nuclei from JLab E03-103 • C/D C/D and 4 He/D /D ratios – no isoscalar correction necessary • Consistent with SLAC results, but much higher precision at high x • Fit the slope of the ratios for 0.35<x<0.7: dR EMC dx • Compare across nuclei PhD theses: J. Seely, A. Daniel J.Seely, A. Daniel, et al., PRL103, 202301 (2009)

  33. J.Seely, et al., PRL 103 103, 202301 (2009) Enter 9 Be EM EMC N. Fomin et al, PRL 108 108 (2012) SRC J. Seely, , et al., PRL103, , 202301 (2009) N. Fomin, , et al., PRL 108, , 092052 (2012) 2 -1 JA, A. Daniel, , D. Day, N. Fomin, , D. a 2 Gaske kell, , P. Solvignon non, , PRC RC 86, , 065204 (2012) O. Hen, , et al, PRC RC 85, , 047301 (2012) L. Weinstein, n, et al., PRL 106, , 052301 (2011)

  34. 2N knockout experiments establish NP dominance R. Sube R. bedi di et et al. l., Science e • Knockout high-initial- 320, , 1476 (2008) momentum proton, look for correlated nucleon partner. • For 300 < P miss < 600 MeV/c all nucleons are part of 2N-SRC pairs: 90% np, 5% pp (nn) R. Shneor et al., PRL 99, 072501 (2007)

  35. 2N knockout experiments establish NP dominance R. R. Sube bedi di et et al. l., Science e 320, , 1476 (2008) 96 ± 23 % 9.5 ± 2 % R. Shneor et al., PRL 99, 072501 (2007)

  36. NP dominance R. Sube bedi di et et al. l., Science e 96 ± 23 320, , 1476 (2008) % R. Shneor et al., 9.5 ± 2 % PRL 99, 072501 (2007) also  Ciofi and Alvioli PRL 100, 162503 (2008)  Sargsian, Abrahamyan, Strikman, Frankfurt PR C71 044615 (2005)

Recommend


More recommend