experimental and modelling study of cyclopentane hydrates
play

Experimental and modelling study of cyclopentane hydrates in the - PowerPoint PPT Presentation

Experimental and modelling study of cyclopentane hydrates in the presence of salts Son HO-VAN (2 nd year PhD student) Jrme DOUZET Baptiste BOUILLOT Jean-Michel HERRI Nancy, 11/12/2017 1 Institut Mines-Tlcom Outlines 1. Introduction


  1. Experimental and modelling study of cyclopentane hydrates in the presence of salts Son HO-VAN (2 nd year PhD student) Jérôme DOUZET Baptiste BOUILLOT Jean-Michel HERRI Nancy, 11/12/2017 1 Institut Mines-Télécom

  2. Outlines 1. Introduction and objective 2. Experimental Methodology 3. Experimental results 4. Modelling of cyclopentane hydrates 5. Conclusions & Perspectives Experimental study and modelling of cyclopentane hydrate in the 2 11/12/2017 Institut Mines-Télécom presence of salts

  3. Introduction What are clathrate hydrates ? Hydrate structure Guest molecule Cavity types Water molecules Cage Water + Guest Guest molecule CP Hydrates The five cavity types and the three common unit crystals structures (E. Dendy Sloan and Jr, 2003) Experimental study and modelling of cyclopentane hydrate in the 3 11/12/2017 Institut Mines-Télécom presence of salts

  4. Hydrates can be used to remove water from aqueous solution → purification method Sea-water Cyclopentane Cyclopentane hydrates Hydrate Hydrate formation dissociation Concentrated Pure-water Cyclopentane hydrate-based Sea-water desalination process Phase equilibria data in the presence of different salts is needed. Experimental and modelling study of cyclopentane hydrates Objective in NaCl, KCl, an equal-weight mixture NaCl-KCl, and CaCl 2 Experimental study and modelling of cyclopentane hydrate in the 4 11/12/2017 Institut Mines-Télécom presence of salts

  5. Outlines 1. Introduction and objective 2. Experimental Methodology 3. Experimental results 4. Modelling of cyclopentane hydrate 5. Conclusions & Perspectives Experimental study and modelling of cyclopentane hydrate in the 5 11/12/2017 Institut Mines-Télécom presence of salts

  6. Experimental methodology 1. Reactor 7. Temperature Equilibrium temperature measument 2. Cryostat transmitter 3. Impeller 8. Computer 4. Agitator 9. Temperature probe 5. Cooling jacket 10. Drying oven 6. Motor 11. Ion chromatography 12. Camera 12 schematic diagram Actual system Experimental study and modelling of cyclopentane hydrate in the 6 11/12/2017 Institut Mines-Télécom presence of salts

  7. Endothermic Protocole: Two procedures process 18 Start chiller 16 Te =7,7°C 14 Temperature, C 12 10 8 Exothermic 6 Equilibrium temperature 4 process 7,7°C Hydrate formation 2 Stop chiller 0 0 50 100 150 200 250 300 350 400 450 500 Initiate by injecting ice Time, min T Estimation Temperature profile in pure water: Quick dissociation Te =7,1°C T Accurate Temperature profile in pure water : Slow dissociation Experimental study and modelling of cyclopentane hydrate in the 7 11/12/2017 Institut Mines-Télécom presence of salts

  8. Outlines 1. Introduction and objective 2. Experimental Methodology 3. Experimental results 4. Modelling of cyclopentane hydrate 5. Conclusions & Perspectives Experimental study and modelling of cyclopentane hydrate in the 8 11/12/2017 Institut Mines-Télécom presence of salts

  9. Equilibrium temperatures in the presence of salts 10 5 0 KCl Temperature, °C -5 NaCl-KCl -10 NaCl -15 CaCl 2 -20 Salt concentration, % w/w -25 0 5 10 15 20 25 NaCl - Quick procedure Mixture KCl- NaCl - Quick procedure NaCl - Slow procedure KCl - Quick procedure KCl - Slow procedure Mixture KCl-NaCl - Slow procedure CaCl2 - Quick procedure CaCl2 - Slow procedure Log. (KCl - Slow procedure) Poly. (KCl - Slow procedure) Poly. (Mixture KCl-NaCl - Slow procedure) Poly. (CaCl2 - Slow procedure) Experimental study and modelling of cyclopentane hydrate in the 9 11/12/2017 Institut Mines-Télécom presence of salts

  10. Equilibrium temperatures in the presence of NaCl, KCl, equi-mass mixture NaCl-KCl, and CaCl 2 Salinity, T e-quick T e-slow T e in T e in T e- T e-slow in T e-slow in % w/w in in NaCl, NaCl a CaCl 2 , slow in °C [9] °C NaCl, NaCl, , °C mixture KCl, °C °C [3] of NaCl- °C KCl, °C 0 7.7 7.1 7.11 - 7.1 7.1 7.1 1 6.9 6.4 - - 6.9 6.7 6.8 2 6.3 5.9 - - 6.1 6.0 6.3 Our values in the 3.5 5.7 5 - - 5.5 5.4 5.6 presence of NaCl, 5 4.9 4.1 - 4.45 4.9 4.6 4.9 0%, 5%, 10%, 8 3.5 2.4 - - 3.6 3.0 3,2 20% and 23% are 10 2 0.9 1.16 1.25 2.4 1.9 1.8 very close 12 0.9 -0.4 - - 1.4 0.6 0.1 Kishimoto [3] and 14 -1 -1.8 - - 0.4 -0,6 -1.9 Zylyftari [9] 16 -2.7 -3.8 - - -0.5 -2,1 -4 18 -5 -5.3 - - -1.9 -3,6 -6.7 20 -7.2 -7.8 -8.00 - -3 -5,4 -9.6 22 -9.7 -10.2 - - - -7,2 -13.2 23 -11 -11.6 -11.66 - - - -15.1 [3]. M. Kishimoto, Apr. 2012. [9]. G. Zylyftari, May 2013. 25 -19.0 Experimental study and modelling of cyclopentane hydrate in the 10 11/12/2017 Institut Mines-Télécom presence of salts

  11. Outlines 1. Introduction and objective 2. Experimental Methodology 3. Experimental results 4. Modelling of cyclopentane hydrate 5. Conclusions & Perspectives Experimental study and modelling of cyclopentane hydrate in the 11 11/12/2017 Institut Mines-Télécom presence of salts

  12. Modelling: Approach n°1 Standard SLE equation:         H ( T T ) C ( T T ) T      fm f fm f f   ln a ln   w     R T T R  T T  f Geochemical model PHREEQC is used to predict water activity a w No data for ΔC fm in the literature for CPH Experimental         Calculate T pred in H ( T T ) C ( T T ) T      Δ C fm (T) fm f fm f f   data in NaCl, ln a ln   KCl, CaCl 2 NaCl-KCl w     R T T R  T T  f T exp N T 1  Algorithm of equilibrium temperature   pred AAD 1 N T prediction  l 1 exp Experimental study and modelling of cyclopentane hydrate in the 12 11/12/2017 Institut Mines-Télécom presence of salts

  13. Approach n°2 & 3 At thermodynamic equilibrium          H L Gibbs-Duhem Statistical thermodynamics w w            H i RT ln ( 1 ) w i j i j Approach n°2: Kihara potential Approach n°3: correlation Interaction potential ( ε , σ ,a) 𝜄 = 𝜄 𝑏 𝑥 Experimental study and modelling of cyclopentane hydrate in the 13 11/12/2017 Institut Mines-Télécom presence of salts

  14. Approach n°1 Modelling results      C mf F ( T ) a exp( b T ) 10,0 a b R (coefficient of determination) 5,0 -(1E-19) 0.1813 0.835 0,0 Temperature, C KCl AAD=0,10% -5,0 NaCl-KCl AAD=0,09% -10,0 NaCl AAD=0,11% -15,0 -20,0 CaCl 2 AAD=0,15% Salt concentration, % w/w -25,0 0 5 10 15 20 25 30 Predicted data - NaCl Predicted data - KCl Predicted data - a mixture of NaCl-KCl Experimental data - NaCl Experimental data - KCl Experimental data - a mixture of NaCl-KCl Predicted data - CaCl2 Experimental data - CaCl2 Predicted-equilibrium temperatures: Approach n°1 Experimental study and modelling of cyclopentane hydrate in the 14 11/12/2017 Institut Mines-Télécom presence of salts

  15. Kihara parameters for CPH Approach n°2 σ (10 -10 m) ε /k a (10 -10 m) 10 0.8968 2.72 265.5 5 0 Temperature, °C KCl AAD=0,05% -5 NaCl-KCl AAD=0,04% -10 NaCl AAD=0,08% -15 -20 CaCl 2 AAD=0,07% -25 0 5 10 15 20 25 30 Salt concentration, % mass Expermental data in NaCl Experimental data in KCl Experimental data in NaCl-KCl Experimental data in CaCl2 Predicted data in CaCl2 Predicted data in NaCl Predicted data in KCl Predicted data in NaCl-KCl Predicted-equilibrium temperatures: Approach n°2 Experimental study and modelling of cyclopentane hydrate in the 15 11/12/2017 Institut Mines-Télécom presence of salts

  16.       Approach n°3        2 F a m a n a p w w w R (coefficient of m n p determination) 10,0 -0.0004772 0.0004731 0.9998800 0.9957110 5,0 0,0 KCl AAD=0.05% Temperature, C -5,0 NaCl-KCl AAD=0.05% -10,0 NaCl AAD=0.04% -15,0 -20,0 CaCl 2 AAD=0.07% Salt concentration , % w/w -25,0 0 5 10 15 20 25 30 Predicted data - NaCl Predicted data - KCl Predicted data - a mixture of KCl-NaCl Experimental data - NaCl Experimental data - KCl Experimental data - a mixture of NaCl-KCl Experimental data - CaCl2 Predicted data - CaCl2 Predicted-equilibrium temperatures: Approach n°3 Experimental study and modelling of cyclopentane hydrate in the 16 11/12/2017 Institut Mines-Télécom presence of salts

  17. Outlines 1. Introduction and objective 2. Methodology 3. Experimental results 4. Modelling of cyclopentane hydrate 5. Conclusions & Perspectives Experimental study and modelling of cyclopentane hydrate in the 17 11/12/2017 Institut Mines-Télécom presence of salts

  18. Conclusions  The Equilibrium temperatures in the presence of NaCl, KCl, mixture NaCl-KCl, and CaCl 2 were determined following the quick and the slow procedures: - The Equilibrium temperatures drop strongly with increasing of salt concentration - Slow dissociation provided accurate data  Accurate thermodynamic predictions : AAD ≤ 0.15% - Occupancy based approaches are better PERSPECTIVES: ADD GAS MOLECULES Experimental study and modelling of cyclopentane hydrate in the 18 11/12/2017 Institut Mines-Télécom presence of salts

  19. Thank you very much for your attention!!! Experimental study and modelling of cyclopentane hydrate in the 19 11/12/2017 Institut Mines-Télécom presence of salts

Recommend


More recommend