examples of non algebraic classes in the brown peterson
play

Examples of non- algebraic classes in the Brown-Peterson tower - PowerPoint PPT Presentation

Examples of non- algebraic classes in the Brown-Peterson tower Institut Mittag-Leffler April 20, 2017 Gereon Quick NTNU Algebraic classes: smooth complex schemes Let E be a motivic spectrum over Sm C . Algebraic classes: smooth complex


  1. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ q n 𝝱 n-1 = 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 𝝱 Question: Is 𝝱 algebraic?

  2. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ q n 𝝱 n-1 = 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 𝝱

  3. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ q n 𝝱 n-1 = 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 𝝱 Levine-Morel-Totaro obstruction:

  4. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ q n 𝝱 n-1 = 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0,

  5. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ q n 𝝱 n-1 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0,

  6. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ q n 𝝱 n-1 ≠ 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0,

  7. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ ✘ q n 𝝱 n-1 ≠ 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0,

  8. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ ✘ ✘ q n 𝝱 n-1 ≠ 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0,

  9. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ ✘ ✘ q n 𝝱 n-1 ≠ 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0, then 𝝱 is not algebraic.

  10. Voevodsky’ s motivic Milnor operations:

  11. Voevodsky’ s motivic Milnor operations: There are motivic operations mod p-motivic Q n ∈ 𝓑 2p n -1,p n -1 mot Steenrod algebra

  12. Voevodsky’ s motivic Milnor operations: There are motivic operations mod p-motivic Q n ∈ 𝓑 2p n -1,p n -1 mot Steenrod algebra For a smooth complex variety X: mot Q n i+2p n -1,j+p n -1 (X;F p ) i,j H (X;F p ) H mot mot mod p-motivic cohomology

  13. Voevodsky’ s motivic Milnor operations: There are motivic operations mod p-motivic Q n ∈ 𝓑 2p n -1,p n -1 mot Steenrod algebra For a smooth complex variety X: mot Q n i+2p n -1,j+p n -1 (X;F p ) i,j H (X;F p ) H mot mot mod p-motivic cohomology 2i,i Recall: = CH i (X;Z/p) H (X;F p ) and mot i,j H (X;F p ) = 0 if i>2j. mot

  14. Obstructions revisited: X smooth complex variety mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  15. Obstructions revisited: X smooth complex variety CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  16. Obstructions revisited: X smooth complex variety CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  17. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  18. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n 𝝱

  19. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 ≠ 0 𝝱 if

  20. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ ✘ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 ≠ 0 𝝱 if

  21. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ ✘ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 ≠ 0 𝝱 if Observation: The LMT-obstruction is particular to smooth varieties and bidegrees (2i,i).

  22. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ ✘ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 ≠ 0 𝝱 if Observation: The LMT-obstruction is particular to smooth varieties and bidegrees (2i,i). Example: Q n 𝛋 ≠ 0 for 𝛋 the fundamental class of a suitable Eilenberg-MacLane space, though 𝛋 is algebraic.

  23. Back to our task:

  24. Back to our task: Study Alg 2 *(X) and its complement in E 2 *(X). E top

  25. Back to our task: Study Alg 2 *(X) and its complement in E 2 *(X). E top For example: E=BP ⟨ n ⟩ ?

  26. Back to our task: Study Alg 2 *(X) and its complement in E 2 *(X). E top For example: E=BP ⟨ n ⟩ ? Recall: BP and BP ⟨ n ⟩ exist in the motivic world (e.g. Vezzosi, Hopkins, Hu-Kriz, Ormsby, Hoyois, Ormsby-Østvær).

  27. Back to our task: Study Alg 2 *(X) and its complement in E 2 *(X). E top For example: E=BP ⟨ n ⟩ ? Recall: BP and BP ⟨ n ⟩ exist in the motivic world (e.g. Vezzosi, Hopkins, Hu-Kriz, Ormsby, Hoyois, Ormsby-Østvær). Question: How can we produce non-algebraic elements in BP ⟨ n ⟩ 2 *(X)? top drop the “top” from now on

  28. Back to the cofibre sequence:

  29. Back to the cofibre sequence: Recall the stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑

  30. Back to the cofibre sequence: Recall the stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ and the induced map q n BP ⟨ n ⟩ * +|v n |+1 (X). BP ⟨ n-1 ⟩ *(X)

  31. Back to the cofibre sequence: Recall the stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ and the induced map q n BP ⟨ n ⟩ * +|v n |+1 (X). BP ⟨ n-1 ⟩ *(X) For example:

  32. Back to the cofibre sequence: Recall the stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ and the induced map q n BP ⟨ n ⟩ * +|v n |+1 (X). BP ⟨ n-1 ⟩ *(X) For example: Bockstein homomorphism q 0 H* +1 (X;Z (p) ), n=0: H*(X;F p )

  33. Back to the cofibre sequence: Recall the stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ and the induced map q n BP ⟨ n ⟩ * +|v n |+1 (X). BP ⟨ n-1 ⟩ *(X) For example: Bockstein homomorphism q 0 H* +1 (X;Z (p) ), n=0: H*(X;F p ) q 1 +2p-1 (X), n=1: H*(X;Z (p) ) BP ⟨ 1 ⟩ * ⋮

  34. A big diagram: H k (X;F p )

  35. A big diagram: H k+1 (X;Z (p) ) q 0 H k (X;F p )

  36. A big diagram: BP ⟨ 1 ⟩ k+1+2p-1 (X) q 1 H k+1 (X;Z (p) ) q 0 H k (X;F p )

  37. A big diagram: +|v 0 |+…+|v n | BP ⟨ n ⟩ k (X) q n ⋮ q 2 BP ⟨ 1 ⟩ k+1+2p-1 (X) q 1 H k+1 (X;Z (p) ) q 0 H k (X;F p )

  38. A big diagram: q n+1 +|v 0 |+…+|v n | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | BP ⟨ n ⟩ k (X) (X) q n ⋮ q 2 BP ⟨ 1 ⟩ k+1+2p-1 (X) q 1 H k+1 (X;Z (p) ) q 0 H k (X;F p )

  39. A big diagram: q n+1 +|v 0 |+…+|v n | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | BP ⟨ n ⟩ k (X) (X) q n ⋮ BP ⟨ n+1 ⟩ q 2 Thom map BP ⟨ 1 ⟩ k+1+2p-1 (X) HF p q 1 H k+1 (X;Z (p) ) q 0 +|v 0 |+…+|v n+1 | H k (X;F p ) H k (X;F p )

  40. A big diagram: q n+1 +|v 0 |+…+|v n | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | BP ⟨ n ⟩ k (X) (X) q n ⋮ BP ⟨ n+1 ⟩ q 2 Thom map BP ⟨ 1 ⟩ k+1+2p-1 (X) HF p q 1 H k+1 (X;Z (p) ) q 0 +|v 0 |+…+|v n+1 | H k (X;F p ) H k (X;F p ) Q n+1 Q n …Q 0

  41. Lifting classes: We get

  42. Lifting classes: We get • a map 𝜒 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X)

  43. Lifting classes: We get • a map 𝜒 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱

  44. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 Q n+1 Q n …Q 0 +|v 0 |+…+|v n+1 | H k (X;F p )

  45. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X)

  46. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X)

  47. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 ≠ 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X)

  48. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction ✘ 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 ≠ 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X)

  49. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction ✘ 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 ≠ 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X) • If Q n+1 ..Q 0 ( 𝝱 ) ≠ 0, then 𝜒 ( 𝝱 ) is not algebraic.

  50. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction ✘ 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 ≠ 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X) • If Q n+1 ..Q 0 ( 𝝱 ) ≠ 0, then 𝜒 ( 𝝱 ) is not algebraic. But we also pay a price…

  51. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction ✘ 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 the degree q n+1 Q n+1 Q n …Q 0 increases ≠ 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X) • If Q n+1 ..Q 0 ( 𝝱 ) ≠ 0, then 𝜒 ( 𝝱 ) is not algebraic. But we also pay a price…

  52. Wilson’ s unstable splitting: The price is as little as possible:

  53. Wilson’ s unstable splitting: The price is as little as possible: Theorem (Wilson): For any finite complex X, the map BP i (X) BP ⟨ n ⟩ i (X) is surjective if i ≤ 2(p n +…+p+1).

  54. Wilson’ s unstable splitting: The price is as little as possible: Theorem (Wilson): For any finite complex X, the map BP i (X) BP ⟨ n ⟩ i (X) is surjective if i ≤ 2(p n +…+p+1). Recall |v n |=2p n -1, hence |v 0 |+…+|v n |=2(p n +…+1)-n-1.

  55. Wilson’ s unstable splitting: The price is as little as possible: Theorem (Wilson): For any finite complex X, the map BP i (X) BP ⟨ n ⟩ i (X) is surjective if i ≤ 2(p n +…+p+1). Recall |v n |=2p n -1, hence |v 0 |+…+|v n |=2(p n +…+1)-n-1. BP k +|v 0 |+…+|v n | (X) 𝜒 =q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X)

  56. Wilson’ s unstable splitting: The price is as little as possible: Theorem (Wilson): For any finite complex X, the map BP i (X) BP ⟨ n ⟩ i (X) is surjective if i ≤ 2(p n +…+p+1). Recall |v n |=2p n -1, hence |v 0 |+…+|v n |=2(p n +…+1)-n-1. BP k +|v 0 |+…+|v n | (X) need to pick k ≥ n+3 ✘ 𝜒 =q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X)

  57. Examples of non-algebraic classes:

Recommend


More recommend