Exact Camera Location Recovery by Least Unsquared Deviations Gilad Lerman University of Minnesota Joint work with Yunpeng Shi (University of Minnesota) and Teng Zhang (University of Central Florida) Gilad Lerman 1 / 23
Content 1 Introduction Structure from motion Camera location recovery 2 Previous Works 3 New theoretical guarantees 4 Conclusion Gilad Lerman 2 / 23
Structure from motion (SfM) ❼ Input: 2D images of the same object from different views ❼ Output: 3D structure of the object Demonstration by Snavely et al. (2006) Gilad Lerman 3 / 23
Pipeline of Structure from Motion ❼ Keypoint matching ❼ Essential matrix estimation ❼ Camera orientation estimation ❼ Camera location estimation Gilad Lerman 4 / 23
❼ ❼ ❼ ❼ Camera Location Recovery ❼ Input: Possibly corrupted pairwise directions between some cameras ❼ Output: Camera locations Gilad Lerman 5 / 23
❼ ❼ ❼ Camera Location Recovery ❼ Input: Possibly corrupted pairwise directions between some cameras ❼ Output: Camera locations ❼ Example: Recovery of 4 locations from 5 uncorrupted pairwise directions Gilad Lerman 5 / 23
❼ ❼ Camera Location Recovery ❼ Input: Possibly corrupted pairwise directions between some cameras ❼ Output: Camera locations ❼ Example: Recovery of 4 locations from 5 uncorrupted pairwise directions ❼ The problem is defined up to shift and scale Gilad Lerman 5 / 23
Camera Location Recovery ❼ Input: Possibly corrupted pairwise directions between some cameras ❼ Output: Camera locations ❼ Example: Recovery of 4 locations from 5 uncorrupted pairwise directions ❼ The problem is defined up to shift and scale ❼ Unique solution (up to shift and scale) may not exist ❼ Graphs whose vertex locations are recoverable from edge directions are called Parallel Rigid Gilad Lerman 5 / 23
❼ Example of non-parallel rigid graphs: Gilad Lerman 6 / 23
❼ Generative Graph Model for Camera Location Recovery ❼ The HLV model is due to Hand, Lee and Voroniski (2015) ❼ It has parameters n ∈ N , 0 ≤ p ≤ 1 and 0 ≤ ǫ b ≤ 1 Gilad Lerman 7 / 23
Generative Graph Model for Camera Location Recovery ❼ The HLV model is due to Hand, Lee and Voroniski (2015) ❼ It has parameters n ∈ N , 0 ≤ p ≤ 1 and 0 ≤ ǫ b ≤ 1 ❼ Step 1 : Generate the following graph with vertices V ∶ = { t ∗ i } n i = 1 ⊆ R 3 i.i.d. ∼ N ( 0 , I ) Gilad Lerman 7 / 23
Generative Graph Model for Camera Location Recovery ❼ Step 2 : The set of edges E are drawn i.i.d. from { ij ∶ 1 ≤ i ≠ j ≤ n } with probability p (Erd¨ os-R´ enyi graph) Gilad Lerman 8 / 23
Generative Graph Model for Camera Location Recovery ❼ Step 3 : For each ij ∈ E , assign the true pairwise direction t ∗ i − t ∗ j γ ij = γ ∗ ij ∶ = ∥ t ∗ i − t ∗ j ∥ Gilad Lerman 9 / 23
Generative Graph Model for Camera Location Recovery ❼ Step 4 : Corrupt the generated graph ▸ Pick a subgraph G b ( V,E b ) such that E b ⊆ E and the maximal degree of G b < ǫ b n . The set of uncorrupted edges is E g ∶ = E ∖ E b ▸ For all ij ∈ E b , replace γ ij by arbitrary unit vector Gilad Lerman 10 / 23
Generative Graph Model for Camera Location Recovery ❼ (Optional) Step 5 : Add the noise γ ij + σ v ij ▸ For all ij ∈ E g , let γ ij = ∥ γ ij + σ v ij ∥ , where σ > 0 is noise level and v ij iid ∼ N ( 0 , I ) Gilad Lerman 11 / 23
Least Squares Camera Location Solvers ❼ Least Squares Solver (M. Brand and et al., 2004): ⎧ i = 1 ∥ t i ∥ 2 = 1 ⎪ ∑ n ⎪ ij ( t i − t j )∥ 2 s.t. ∥ P γ ⊥ ⎨ i = 1 ⊂ R 3 ∑ min , ⎪ ∑ n i = 1 t i = 0 ⎪ { t i } n ⎩ ij ∈ E where P γ ⊥ ij denotes the orthogonal projection onto the orthogonal complement of γ ij ❼ Constrained Least Squares Solver (Tron and Vidal, 2009): ⎧ ⎪ α ij ≥ 1 ⎪ ∥ t i − t j − α ij γ ij ∥ 2 s.t. ⎨ ∑ min ⎪ ∑ n i = 1 t i = 0 ⎪ { t i } n i = 1 ⊂ R 3 ⎩ ij ∈ E { αij } ij ∈ E ⊂ R Gilad Lerman 12 / 23
Current Robust Location Solvers ❼ LUD: Least Unsquared Deviations (Ozyesil and Singer, 2015): ⎧ ⎪ ⎪ α ij ≥ 1 ∥ t i − t j − α ij γ ij ∥ s.t. ⎨ ∑ min ⎪ ∑ n i = 1 t i = 0 ⎪ { t i } n i = 1 ⊂ R 3 ⎩ ij ∈ E { αij } ij ∈ E ⊂ R ❼ ShapeFit (Hand, Lee and Voroninski, 2015): ⎧ ⎪ ⎪ ∑ ij ∈ E ⟨ t i − t j , γ ij ⟩ = 1 ∥ P γ ⊥ ij ( t i − t j )∥ s.t. ⎨ i = 1 ⊂ R 3 ∑ min , ⎪ ∑ n i = 1 t i = 0 ⎪ { t i } n ⎩ ij ∈ E where P γ ⊥ ij denotes the orthogonal projection onto the orthogonal complement of γ ij Gilad Lerman 13 / 23
Empirical performance of LUD and ShapeFit ❼ Performance of LUD and ShapeFit for synthetic data with corruption and noise Gilad Lerman 14 / 23
Theoretical Guarantees Theorem 0 (Hand, Lee and Voroninski, 2015) There exist absolute constants n 0 , C 0 and C 1 such that for n > n 0 and for i = 1 ⊆ R 3 , E ⊆ [ n ] × [ n ] and { γ ij } ij ∈ E ⊆ R 3 generated by the HLV { t ∗ i } n model with parameters n , p and ǫ b satisfying C 0 n − 1 / 5 log 3 / 5 n ≤ p ≤ 1 and ǫ b ≤ C 1 p 5 / log 3 n , ShapeFit recovers { t ∗ i } n i = 1 up to shift and scale with probability 1 − 1 / n 4 . Gilad Lerman 15 / 23
Theoretical Guarantees Theorem 0 (Hand, Lee and Voroninski, 2015) There exist absolute constants n 0 , C 0 and C 1 such that for n > n 0 and for i = 1 ⊆ R 3 , E ⊆ [ n ] × [ n ] and { γ ij } ij ∈ E ⊆ R 3 generated by the HLV { t ∗ i } n model with parameters n , p and ǫ b satisfying C 0 n − 1 / 5 log 3 / 5 n ≤ p ≤ 1 and ǫ b ≤ C 1 p 5 / log 3 n , ShapeFit recovers { t ∗ i } n i = 1 up to shift and scale with probability 1 − 1 / n 4 . Theorem 1 (L, Shi and Zhang, 2017) There exist absolute constants n 0 , C 0 and C 1 such that for n > n 0 and for i = 1 ⊆ R 3 , E ⊆ [ n ] × [ n ] and { γ ij } ij ∈ E ⊆ R 3 generated by the HLV { t ∗ i } n model with parameters n , p and ǫ b satisfying C 0 n − 1 / 3 log 1 / 3 n ≤ p ≤ 1 and ǫ b ≤ C 1 p 7 / 3 / log 9 / 2 n , LUD recovers { t ∗ i } n i = 1 up to shift and scale with probability 1 − 1 / n 4 . Gilad Lerman 15 / 23
Part1 of Proof: Reformulation of LUD ❼ Recall LUD: ⎧ ⎪ α ij ≥ 1 ⎪ t i } n ({ ˆ i = 1 , { ˆ α ij } ij ∈ E ) = arg min ∑ ∥ t i − t j − α ij γ ij ∥ s.t. ⎨ ⎪ ∑ i t i = 0 ⎪ { t i } n i = 1 ⊂ R 3 ⎩ ij ∈ E { αij } ij ∈ E ⊂ R ❼ Expression for ˆ α ij in two complementary cases: Case 2: ⟨ ˆ t i − ˆ t j , γ ij ⟩ ≤ 1 Case 1: ⟨ ˆ t i − ˆ t j , γ ij ⟩ > 1 ˆ t i − ˆ t i − ˆ ˆ t j t j γ ij = ˆ γ ij 0 α ij γ ij ˆ 0 α ij γ ij α ij = ⟨ ˆ t i − ˆ t j , γ ij ⟩ α ij = 1 Here ˆ Here ˆ Gilad Lerman 16 / 23
Reformulation of LUD ❼ Recall LUD: ⎧ ⎪ α ij ≥ 1 ⎪ ({ ˆ t i } n i = 1 , { ˆ α ij } ij ∈ E ) = arg min ∥ t i − t j − α ij γ ij ∥ s.t. ⎨ ∑ ⎪ ∑ i t i = 0 ⎪ { t i } n i = 1 ⊂ R 3 ⎩ ij ∈ E { αij } ij ∈ E ⊂ R ❼ Expression for ˆ α ij : ⎧ ⎪ ⎪ ⟨ ˆ t i − ˆ t j , γ ij ⟩ , if ⟨ ˆ t i − ˆ t j , γ ij ⟩ > 1; α ij = ⎨ ˆ ⎪ if ⟨ ˆ t i − ˆ t j , γ ij ⟩ ≤ 1 ⎪ 1 , ⎩ ❼ Reformulation: { ˆ t i } n i = 1 = f ij ( t i , t j ) subject to ∑ n i = 1 t i = 0 , i = 1 ⊂ R 3 ∑ min { t i } n ij ∈ E ⎧ ⎪ ∥ P γ ⊥ ij ( t i − t j )∥ , if ⟨ t i − t j , γ ij ⟩ > 1; ⎪ where f ij ( t i , t j ) = ⎨ ⎪ ⎪ ∥ t i − t j − γ ij ∥ , if ⟨ t i − t j , γ ij ⟩ ≤ 1 ⎩ Gilad Lerman 17 / 23
Part 2 of the Proof: Optimality Condition ❼ WLOG, assume that { t ∗ i } n i = 1 is already centered at 0 ❼ Goal : Show that under a certain condition any perturbation from the ground truth { c ∗ t ∗ i } n i = 1 increases the value of the objective function, where c ∗ = arg min f ij ( c t ∗ i ,c t ∗ j ) ∑ c ∈ R ij ∈ E Gilad Lerman 18 / 23
Adaptation of ShapeFit Analysis ❼ Observation: On long edges, i.e., ∥ t ∗ i − t ∗ j ∥ > 1 c ∗ , the objective functions of ShapeFit and LUD coincide for the ground truth solution { ˆ t i } n i = 1 = { c ∗ t ∗ i } n i = 1 ❼ Define the set of good and long edges, E gl = { ij ∈ E g ∣ ∥ t ∗ i − t ∗ j ∥ > 1 / c ∗ } , and its complement E c gl = E ∖ E gl ❼ The analysis of ShapeFit with E g and E c g is replaced with E gl and E c gl Gilad Lerman 19 / 23
Good-Long-Dominance Condition Definition 1 V = { t ∗ i } n i = 1 , E ⊆ [ n ] × [ n ] and { γ ij } ij ∈ E satisfy the good-long-dominance i = 1 ∈ R 3 such that ∑ n condition if for any perturbation vectors { ǫ i } n i = 1 ǫ i = 0 and ∑ n i = 1 ⟨ ǫ i , t ∗ i ⟩ = 0 , ∥ P γ ∗⊥ ij ( ǫ i − ǫ j )∥ ≥ ∑ ∥ ǫ i − ǫ j ∥ . ∑ ij ∈ E c ij ∈ E gl gl Theorem 2 If V = { t ∗ i } n i = 1 , E ⊆ [ n ] × [ n ] and { γ ij } ij ∈ E satisfy the good-long-dominance condition, then LUD exactly recovers the ground truth solution up to shift and scale. Gilad Lerman 20 / 23
Recommend
More recommend