exact bichromatic
play

Exact (Bichromatic) Maximum Inner Product , - PowerPoint PPT Presentation

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product , Lijie Chen (Massachusetts Institute of Technology) Max-IP and Z-Max-IP (Boolean) Max-IP : Given sets and


  1. On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product 𝑁𝑏𝑦 𝑏,𝑐 βˆˆπ΅Γ—πΆ 𝑏 β‹… 𝑐 Lijie Chen (Massachusetts Institute of Technology)

  2. Max-IP and Z-Max-IP β€’ (Boolean) Max-IP : β€’ Given sets 𝐡 and 𝐢 of Boolean vectors (each of size n) find 𝑏 in 𝐡 and 𝑐 in 𝐢 with maximum inner product: β€’ For sets 𝐡 and 𝐢 , set 𝑁𝑏𝑦𝐽𝑄 𝐡, 𝐢 ≔ 𝑏,𝑐 βˆˆπ΅Γ—πΆ βŸ¨π‘, π‘βŸ© . max β€’ Approx. version: find a r-multiplicative approximation to the answer: β€’ Want an 𝐡𝑀𝐻 s.t. 𝑁𝑏𝑦𝐽𝑄(𝐡, 𝐢) ≀ 𝐡𝑀𝐻(𝐡, 𝐢) ≀ 𝑁𝑏𝑦𝐽𝑄(𝐡, 𝐢) β‹… 𝑠 . β€’ Z-Max-IP : β€’ Two sets of π‘œ Integer vectors.

  3. Max-IP and Z-Max-IP β€’ Basic problems, relevant in practice. β€’ Important theoretical implications as well. β€’ Approx. Boolean Max-IP: β€’ [ARW’17]: basis of the recent breakthrough result β€’ Bichromatic LCS Closest Pair over permutations, in Hardness for Approximation in P, implies β€’ Approximate Regular Expression Matching, hardness for many other problems. β€’ Diameter in Product Metric, β€’ Approximate Closest Pair in Euclidian Space [Rub’18] β€’ Z-Max-IP: β€’ [Wil’18]: Hardness for Z-Max-IP implies hardness for finding furthest pair in low dimension Euclidean space.

  4. New Hardness for Z-Max-IP (under SETH) β€’ Z-Max-IP for n vectors of πŸ‘ 𝑷 𝐦𝐩𝐑 βˆ— 𝒐 dimensions requires π‘œ 2βˆ’π‘(1) time under SETH. Z-Max-IP : β€’ Z-Max-IP for π‘œ vectors of πŸ‘ 𝑷 𝐦𝐩𝐑 βˆ— 𝒐 in π‘œ 1.99 time. Given sets 𝐡 and 𝐢 of Integer β€’ β‡’ Max-IP for π‘œ vectors of 𝑃(log π‘œ) dim. in π‘œ 1.99 time. vectors (each of size n) find 𝑏 in β€’ β‡’ CNF-SAT for π‘œ variables and 𝑃(π‘œ) clauses in 2 0.995π‘œ time. 𝐡 and 𝑐 in 𝐢 with maximum inner product: β€’ ⇔ SETH is false. [CIP’06] β€’ Closer to the upper bound β€’ [Mat’92] : Z -Max-IP in n 2βˆ’1/O(d) time. Upper Bound Lower Bound Lower Bound π‘œ 2βˆ’πœ— when 𝑒 = 𝑃(1) π‘œ 2βˆ’o(1) when 𝑒 = πœ•(log 2 log π‘œ) π‘œ 2βˆ’o(1) when 𝑒 = 2 𝑃 log βˆ— π‘œ ? [Mat’92] [This work] Implicit in [Wil’18]

  5. New Hardness for Z-Max-IP (under SETH) Z-Max-IP : 1. New Hardness for Z-Max-IP (under SETH): Given sets 𝐡 and 𝐢 of Integer vectors (each of size n) find 𝑏 in β€’ Z-Max-IP for n vectors of πŸ‘ 𝑷 𝐦𝐩𝐑 βˆ— 𝒐 dimensions 𝐡 and 𝑐 in 𝐢 with maximum requires π‘œ 2βˆ’π‘(1) time. inner product: β€’ Separation for Boolean Max-IP / Z-Max-IP: β€’ Z-Max-IP is much harder than Boolean Max-IP. β€’ Progress on Open Problem 23 in Dagstuhl workshop on Structure and Hardness in P Z-Max-IP Boolean Max-IP π‘œ 2βˆ’πœ— when 𝑒 = 𝑑 log π‘œ . π‘œ 2βˆ’o(1) when 𝑒 = 2 𝑃 log βˆ— π‘œ [AW15, ACW16] [This work] HARD EASY

  6. New Hardness for Z-Max-IP (under SETH) Z-Max-IP : 1. New Hardness for Z-Max-IP (under SETH): Given sets 𝐡 and 𝐢 of Integer vectors (each of size n) find 𝑏 in β€’ Z-Max-IP for n vectors of πŸ‘ 𝑷 𝐦𝐩𝐑 βˆ— 𝒐 dimensions 𝐡 and 𝑐 in 𝐢 with maximum require π‘œ 2βˆ’π‘(1) time. inner product. New Hardness for β„“ 2 -Furthest Pair in 𝑆 𝑒 . (reductions from [Wil18]) β€’ Finding β„“ 2 -Furthest Pair in 𝑆 𝑒 among π‘œ points for 𝑒 = β€’ 2 𝑃 log βˆ— π‘œ requires π‘œ 2βˆ’π‘(1) time. β€’ Stronger separation between furthest and closest pair. β„“ 2 -Furthest Pair β„“ 2 -Furthest Pair β„“ 2 -Closest Pair π‘œ 2βˆ’o(1) when 𝑒 = πœ•(log 2 log π‘œ) π‘œ 2βˆ’o(1) when 𝑒 = 2 𝑃 log βˆ— π‘œ 2 𝑃 𝑒 β‹… π‘œ π‘žπ‘π‘šπ‘§π‘šπ‘π‘•(π‘œ) [This work] [Wil’18] [BS76, KM95, DHKP97] HARD EASY

  7. Characterization of Boolean Approx. Max-IP 2. Characterization of Approx. Max-IP: β€’ Boolean Max-IP : β€’ For sets 𝐡 and 𝐢 with π‘œ Boolean β€’ [ARW’17]: Finding 2 (log 1βˆ’o 1 π‘œ) approximation to vectors, find 𝑁𝑏𝑦𝐽𝑄 𝐡, 𝐢 ≔ Max-IP with π‘œ 𝑝 1 dimensions, requires 𝑏,𝑐 βˆˆπ΅Γ—πΆ βŸ¨π‘, π‘βŸ© . max π‘œ 2βˆ’π‘(1) 𝑒𝑗𝑛𝑓. β€’ Approx. version: find a r- multiplicative approximation to the β€’ A more refined question: answer: β€’ For each vector dimension 𝑒 = 𝑒 π‘œ , what is the 𝑁𝑏𝑦𝐽𝑄(𝐡, 𝐢) ≀ 𝐡𝑀𝐻(𝐡, 𝐢) ≀ 𝑁𝑏𝑦𝐽𝑄(𝐡, 𝐢) β‹… 𝑠 . smallest 𝑠 such that Max-IP can be 𝑠 -approximated in truly sub-quadratic time? β€’ d = d(n) : vector dimensions β€’ r = r(n) : approx. ratio

  8. Characterization of Boolean Approx. Max-IP 2. Characterization of Approx. Max-IP: β€’ Boolean Max-IP : β€’ For sets 𝐡 and 𝐢 with π‘œ Boolean β€’ A more refined question: vectors, find 𝑁𝑏𝑦𝐽𝑄 𝐡, 𝐢 ≔ β€’ For each vector dimension 𝑒 = 𝑒 π‘œ , what is the 𝑏,𝑐 βˆˆπ΅Γ—πΆ βŸ¨π‘, π‘βŸ© . max smallest 𝑠 such that Max-IP can be 𝑠 -approximated in truly sub-quadratic time? β€’ Approx. version: find a r- multiplicative approximation to the β€’ We obtain a characterization (under SETH)! answer: 𝑁𝑏𝑦𝐽𝑄(𝐡, 𝐢) ≀ 𝐡𝑀𝐻(𝐡, 𝐢) ≀ β€’ For all 𝑒 satisfying πœ• log π‘œ < 𝑒 < π‘œ 𝑝 1 𝑁𝑏𝑦𝐽𝑄(𝐡, 𝐢) β‹… 𝑠 . Ξ©(1) 𝑒 β€’ Truly sub-quadratic time for 𝑠 = EASY! log π‘œ β€’ d = d(n) : vector dimensions o(1) β€’ 𝑒 β€’ Requires π‘œ 2βˆ’π‘(1) time for 𝑠 = r = r(n) : approx. ratio HARD! log π‘œ

  9. Characterization of Boolean Approx. Max-IP 2. Characterization of Approx. Max-IP: β€’ Boolean Max-IP : β€’ We obtain a characterization! β€’ For sets 𝐡 and 𝐢 with π‘œ Boolean Ξ©(1) 𝑒 π‘œ 2βˆ’πœ— time. EASY! β€’ 𝑠 = vectors, find 𝑁𝑏𝑦𝐽𝑄 𝐡, 𝐢 ≔ log π‘œ 𝑏,𝑐 βˆˆπ΅Γ—πΆ βŸ¨π‘, π‘βŸ© . max o(1) 𝑒 π‘œ 2βˆ’π‘ 1 time. HARD! β€’ 𝑠 = log π‘œ β€’ Approx. version: find a r- β€’ Example: multiplicative approximation to the β€’ 𝑒 = 𝑑 log π‘œ , 𝑃(1) -approximation is EASY. answer: β€’ 𝑒 = log 2 π‘œ , 𝑃(log 0.1 π‘œ) βˆ’approximation is EASY. 𝑁𝑏𝑦𝐽𝑄(𝐡, 𝐢) ≀ 𝐡𝑀𝐻(𝐡, 𝐢) ≀ β€’ 𝑒 = log 2 π‘œ , (log 𝑝(1) π‘œ) -approximation is HARD. 𝑁𝑏𝑦𝐽𝑄(𝐡, 𝐢) β‹… 𝑠 . β€’ Upper Bound via polynomial method . β€’ d = d(n) : vector dimensions β€’ r = r(n) : approx. ratio β€’ Lower Bound follows from [Rub’18] .

  10. New Merlin-Arthur Protocol for Set- Disjointness β€’ MA Communication Protocol : β€’ Alice holds x, Bob holds y, want 3. A new MA Protocol for Set-Disjointness to compute F(x,y). β€’ [AW’09] : An O( π‘œ log π‘œ) MA protocol. β€’ [Kla’03] : Ξ©( π‘œ) Lower Bound. β€’ This work: an O( π‘œ log π‘œ log log π‘œ) protocol. Ξ©( π‘œ) O( π‘œ log π‘œ) O( π‘œ log π‘œ log log π‘œ) 2 β€’ F(x,y) = 1 β‡’ exists a proof, Pr 𝑏𝑑𝑑 β‰₯ ? 3 . [Lower Bound] [Upper Bound] [Upper Bound] F(x,y) = 0 β‡’ for all proofs, Pr 𝑏𝑑𝑑 ≀ 1 [Kla’03] [AW’09] [This work] β€’ 3 . β€’ Complexity = Proof Length + Communication

  11. New Connection with Communication Complexity 4. New Connection with Communication Complexity Quantum! β€’ [ARW’17]: β€’ π‘œ log π‘œ MA protocol for Set-Disjointness β€’ β‡’ SETH-Hardness for Approx. Boolean Max-IP. β€’ Open Question from [ARW’17]: β€’ There is a π‘œ BQP protocol for Set-Disjointness. Does it also imply some hardness results? {βˆ’πŸ, 𝟐} -Max-IP: β€’ [This work]: YES! Given sets 𝐡 and 𝐢 of vectors β€’ π‘œ BQP protocol for Set-Disjointness with {βˆ’1,1} entries (each of β€’ β‡’ SETH-Hardness for Approx. {βˆ’1,1} -Max-IP size π‘œ ) find 𝑏 in 𝐡 and 𝑐 in 𝐢 with maximum inner product.

  12. Proof Overview: SETH-Hardness of Z-Max-IP β€’ Starting Point : SETH implies OV Conjecture. β€’ Orthogonal Vectors (OV) Problem: β€’ Given two sets A,B of Boolean vectors, find an orthogonal pair between them. OV Conjecture: OV with sets of π‘œ vectors, πœ•(log π‘œ) dimensions requires π‘œ 2βˆ’π‘(1) time. Our Goal : A β€œdimensionality” reduction from πœ•(log π‘œ) dimensional OV to 2 𝑃 log βˆ— π‘œ dimensional Z-Max-IP

  13. Reduction RoadMap Orthogonal Vectors (OV) Problem : β€’ First cover a baby version which shows πœ• log 2 log π‘œ Two sets A,B of dimensional Z-Max- IP is hard. (same as [Wil’18]) Boolean vectors, β€’ Then outline the key ideas to get the 2 𝑃 log βˆ— π‘œ dimensional find an orthogonal pair hardness. between them. β€’ An intermediate problem: Z-Max-IP : β€’ Z-OV : Given two sets A,B of Integer vectors, find an orthogonal Two sets of π‘œ pair between them. Integer vectors. find a pair between them which maximize πœ• log 2 log π‘œ -dim. Hard Easy πœ• log log π‘œ -dim. πœ• log π‘œ -dim. their inner Z-OV OV Z-Max-IP product.

  14. πœ• log 2 log π‘œ -dim. Hard Easy πœ• log log π‘œ -dim. πœ• log π‘œ -dim. Z-OV OV Z-Max-IP Easy Part: Z-OV β‡’ Z-Max-IP β€’ Implicit in [Wil’18]. Z-OV : Two sets A,B of β€’ 𝑏, 𝑐 ∈ π‘Ž 𝑒 . (Squaring trick) Integer vectors, find an orthogonal β€’ 𝑏 β‹… 𝑐 = 0 β‡’ βˆ’ 𝑏 β‹… 𝑐 2 = 0 pair between β€’ 𝑏 β‹… 𝑐 β‰  0 β‡’ βˆ’ 𝑏 β‹… 𝑐 2 < 0 them. β€’ To solve Z-OV, it suffices to calculate the maximum value of βˆ’ 𝑏 β‹… 𝑐 2 for 𝑏, 𝑐 ∈ 𝐡 Γ— 𝐢 . Z-Max-IP : Given sets 𝐡 and 𝐢 β€’ βˆ’ 𝑏 β‹… 𝑐 2 = βˆ’ Οƒ 𝑗 𝑏 𝑗 β‹… 𝑐 𝑗 2 = βˆ’ Οƒ 𝑗,π‘˜ 𝑏 𝑗 𝑏 π‘˜ 𝑐 𝑗 𝑐 of Integer vectors π‘˜ (each of size n) find 𝑏 𝑗,π‘˜ = 𝑏 𝑗 β‹… 𝑏 π‘˜ , ΰ΄€ β€’ ΰ΄€ 𝑐 𝑗,π‘˜ = βˆ’π‘ 𝑗 β‹… 𝑐 π‘˜ . 𝑏 in 𝐡 and 𝑐 in 𝐢 with maximum 𝑐 , Z-Max-IP with 𝑒 2 dim. 𝑏 β‹… ΰ΄€ β€’ Maximize ΰ΄€ inner product.

Recommend


More recommend