evolution on realistic landscapes
play

Evolution on realistic landscapes How ruggedness effects population - PowerPoint PPT Presentation

Evolution on realistic landscapes How ruggedness effects population dynamics Peter Schuster Institut fr Theoretische Chemie, Universitt Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Seminar Lecture Theoretical


  1. Evolution on realistic landscapes How ruggedness effects population dynamics Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Seminar Lecture Theoretical Biochemistry, Univ.Vienna, 09.04.2010

  2. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

  3. Prologue The work on a molecular theory of evolution started 42 years ago ...... 1971 1977 1988 Chemical kinetics of molecular evolution

  4. 1. Chemical kinetics of replication and mutation 2. Complexity of fitness landscapes 3. Quasispecies on realistic landscapes 4. Neutrality and replication

  5. 1. Chemical kinetics of replication and mutation 2. Complexity of fitness landscapes 3. Quasispecies on realistic landscapes 4. Neutrality and replication

  6. Enzyme immobilized Stock solution : [A] = a = a 0 Flow rate : r = � R -1 The population size N , the number of polynucleotide molecules, is controlled by the flow r ≈ ± N t N N ( ) The flowreactor is a device for studying evolution in vitro and in silico

  7. x d ∑ n j = − = W x x Φ j n ; 1 , 2 , , K ji i j = i dt 1 ∑ ∑ n n = Φ f x x i i i = = i i 1 1 Manfred Eigen 1927 - Mutation and (correct) replication as parallel chemical reactions M. Eigen. 1971. Naturwissenschaften 58:465, M. Eigen & P. Schuster.1977. Naturwissenschaften 64:541, 65:7 und 65:341

  8. Taq = thermus aquaticus Accuracy of replication: Q = q 1 · q 2 · q 3 · … · q n The logics of DNA replication

  9. RNA replication by Q � -replicase C. Weissmann, The making of a phage . FEBS Letters 40 (1974), S10-S18

  10. dx dx = = f x f x 1 and 2 2 2 1 1 dt dt = ξ = ξ ζ = ξ + ξ η = ξ − ξ = x f x f f f f , , , , 1 2 1 2 1 2 1 2 1 2 1 2 − η = η ft t e ( ) ( 0 ) ζ = ζ ft t e ( ) ( 0 ) Complementary replication as the simplest molecular mechanism of reproduction

  11. Christof K. Biebricher, 1941-2009 Kinetics of RNA replication C.K. Biebricher, M. Eigen, W.C. Gardiner, Jr. Biochemistry 22 :2544-2559, 1983

  12. x d ∑ ∑ n n j = − = − = W x x Φ Q f x x Φ j n ; 1 , 2 , , K ji i j ji i i j = = i 1 i 1 dt ∑ ∑ n n = Φ f x x i i i = = i i 1 1 Factorization of the value matrix W separates mutation and fitness effects.

  13. Mutation-selection equation : [I i ] = x i � 0, f i � 0, Q ij � 0 dx ∑ ∑ ∑ n n n = − φ = = φ = = i Q f x x i n x f x f , 1 , 2 , , ; 1 ; L ij j j i i j j = = = dt j i j 1 1 1 solutions are obtained after integrating factor transformation by means of an eigenvalue problem ( ) ( ) ∑ − n 1 ⋅ ⋅ λ c t l 0 exp ( ) ∑ n ik k k = = = = x t k i n c h x 0 ; 1 , 2 , , ; ( 0 ) ( 0 ) L ( ) ( ) ∑ ∑ i − k ki i n n 1 = i ⋅ ⋅ λ 1 c t 0 exp l jk k k = = j k 1 0 { } { } { } ÷ = = = − = = = 1 W f Q i j n L i j n L H h i j n ; , 1 , 2 , L , ; l ; , 1 , 2 , L , ; ; , 1 , 2 , L , i ij ij ij { } − ⋅ ⋅ = Λ = λ = − 1 L W L k n ; 0 , 1 , L , 1 k

  14. Perron-Frobenius theorem applied to the value matrix W λ W is primitive: (i) is real and strictly positive 0 (ii) λ > λ ≠ k for all 0 k 0 λ (iii) is associated with strictly positive eigenvectors 0 (iv) is a simple root of the characteristic equation of W λ 0 (v-vi) etc. W is irreducible: (i), (iii), (iv), etc. as above λ ≥ λ ≠ (ii) k for all 0 0 k

  15. constant level sets of � Selection of quasispecies with f 1 = 1.9, f 2 = 2.0, f 3 = 2.1, and p = 0.01 , parametric plot on S 3

  16. Quasispecies Uniform distribution Stationary population or quasispecies as a function of the mutation or error rate p 0.00 0.05 0.10 Error rate p = 1-q

  17. Eigenvalues of the matrix W as a function of the error rate p

  18. The no-mutational backflow or zeroth order approximation

  19. ( 0 ) x d ( ) = − φ = φ = ( 0 ) m x Q f t t Q f ( ) 0 and ( ) m mm m mm m dt − − σ ( ) Q 1 1 = = σ − − n ( 0 ) x mm m p ( 1 ) 1 m m − σ − σ − 1 1 1 m m − − = ⇒ − = σ ≈ − σ n n ( 0 ) 1 1 / x p p 0 ( 1 ) and 1 ( ) m m cr m f 1 ∑ N σ = = m f x f and − m m i i − = ≠ f x i i m ( 1 ) 1 , − m m The ‚no-mutational-backflow‘ or zeroth order approximation

  20. ( 0 ) x d ( ) = − φ = φ = ( 0 ) m x Q f t t Q f ( ) 0 and ( ) m mm m mm m dt − − σ ( ) Q 1 1 = = σ − − n ( 0 ) x mm m p ( 1 ) 1 m m − σ − σ − 1 1 1 m m − − = ⇒ − = σ ≈ − σ n n ( 0 ) 1 1 / x p p 0 ( 1 ) and 1 ( ) m m cr m f 1 ∑ N σ = = m f x f and − m m i i − = ≠ f x i i m ( 1 ) 1 , − m m The ‚no-mutational-backflow‘ or zeroth order approximation

  21. ( 0 ) x d ( ) = − φ = φ = ( 0 ) m x Q f t t Q f ( ) 0 and ( ) m mm m mm m dt − − σ ( ) Q 1 1 = = σ − − n ( 0 ) x mm m p ( 1 ) 1 m m − σ − σ − 1 1 1 m m − − = ⇒ − = σ ≈ − σ n n ( 0 ) 1 1 / x p p 0 ( 1 ) and 1 ( ) m m cr m f 1 ∑ N σ = = m f x f and − m m i i − = ≠ f x i i m ( 1 ) 1 , − m m The ‚no-mutational-backflow‘ or zeroth order approximation

  22. Chain length and error threshold ⋅ σ = − ⋅ σ ≥ ⇒ ⋅ − ≥ − σ n Q p n p ( 1 ) 1 ln ( 1 ) ln m m m σ ln ≈ p n m constant : K max p σ ln ≈ n p m constant : K max n = − n Q p ( 1 ) replicatio n accuracy K p K error rate n chain length K f = σ m superiorit y of master sequence K m ∑ ≠ f j m j

  23. Quasispecies Driving virus populations through threshold The error threshold in replication: No mutational backflow approximation

  24. Molecular evolution of viruses

  25. 1. Chemical kinetics of replication and mutation 2. Complexity of fitness landscapes 3. Quasispecies on realistic landscapes 4. Neutrality and replication

  26. � 0 , � 0 � largest eigenvalue and eigenvector diagonalization of matrix W „ complicated but not complex “ � = G W F mutation matrix fitness landscape „ complex “ ( complex ) sequence structure � „ complex “ mutation selection Complexity in molecular evolution

  27. Sewall Wright. 1931. Evolution in Mendelian populations. Genetics 16:97-159. -- --. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: D.F.Jones, ed. Proceedings of the Sixth International Congress on Genetics, Vol.I. Brooklyn Botanical Garden. Ithaca, NY, pp. 356-366. -- --. 1988. Surfaces of selective value revisited. The American Naturalist 131:115-131.

  28. Build-up principle of binary sequence spaces

  29. Build-up principle of four letter (AUGC) sequence spaces

  30. linear and multiplicative hyperbolic Smooth fitness landscapes

  31. The linear fitness landscape shows no error threshold

  32. Error threshold on the hyperbolic landscape

  33. step linear landscape single peak landscape Rugged fitness landscapes

  34. Error threshold on the single peak landscape

  35. Error threshold on the step linear landscape

  36. The error threshold can be separated into three phenomena: 1. Decrease in the concentration of the master sequence to very small values. 2. Sharp change in the stationary concentration of the quasispecies distribuiton. 3. Transition to the uniform distribution at small mutation rates. All three phenomena coincide for the quasispecies on the single peak fitness lanscape.

  37. The error threshold can be separated into three phenomena: 1. Decrease in the concentration of the master sequence to very small values. 2. Sharp change in the stationary concentration of the quasispecies distribuiton. 3. Transition to the uniform distribution at small mutation rates. All three phenomena coincide for the quasispecies on the single peak fitness lanscape.

  38. Paul E. Phillipson, Peter Schuster. (2009) Modeling by nonlinear differential equations. Dissipative and conservative processes. World Scientific, Singapore, pp.9-60.

  39. 1. Chemical kinetics of replication and mutation 2. Complexity of fitness landscapes 3. Quasispecies on realistic landscapes 4. Neutrality and replication

  40. single peak landscape „realistic“ landscape Rugged fitness landscapes over individual binary sequences with n = 10

  41. Error threshold: Individual sequences n = 10, � = 2, s = 491 and d = 0, 1.0, 1.875

  42. Shift of the error threshold with increasing ruggedness of the fitness landscape

  43. d = 0.100 d = 0.200 n = 10, f 0 = 1.1, f n = 1.0, s = 919 Case I : Strong Quasispecies

  44. Case II : Dominant single transition d = 0.190 d = 0.190 n = 10, f 0 = 1.1, f n = 1.0, s = 541

Recommend


More recommend