Evolution in vitro and Evolutionary Biotechnology Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien RNA Secondary Structures in Dijon Dijon, 24.– 26.06.2002
10 6 generations 10 7 generations Generation time 10 000 generations RNA molecules 10 sec 27.8 h = 1.16 d 115.7 d 3.17 a 1 min 6.94 d 1.90 a 19.01 a Bacteria 20 min 138.9 d 38.03 a 380 a 10 h 11.40 a 1 140 a 11 408 a Higher multicelluar 10 d 274 a 27 380 a 273 800 a 2 × 10 7 a 2 × 10 8 a organisms 20 a 20 000 a Generation times and evolutionary timescales
Evolution of RNA molecules based on Q β phage D.R.Mills, R,L,Peterson, S.Spiegelman, An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule . Proc.Natl.Acad.Sci.USA 58 (1967), 217-224 S.Spiegelman, An approach to the experimental analysis of precellular evolution . Quart.Rev.Biophys. 4 (1971), 213-253 C.K.Biebricher, Darwinian selection of self-replicating RNA molecules . Evolutionary Biology 16 (1983), 1-52 C.K.Biebricher, W.C. Gardiner, Molecular evolution of RNA in vitro . Biophysical Chemistry 66 (1997), 179-192 G.Strunk, T. Ederhof, Machines for automated evolution experiments in vitro based on the serial transfer concept . Biophysical Chemistry 66 (1997), 193-202
RNA sample Time 0 1 2 3 4 5 6 69 70 � Stock solution: Q RNA-replicase, ATP, CTP, GTP and UTP, buffer The serial transfer technique applied to RNA evolution in vitro
Reproduction of the original figure of the β serial transfer experiment with Q RNA D.R.Mills, R,L,Peterson, S.Spiegelman, An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule . Proc.Natl.Acad.Sci.USA 58 (1967), 217-224
Decrease in mean fitness due to quasispecies formation The increase in RNA production rate during a serial transfer experiment
5' 3' Plus Strand G C C C G Synthesis 5' 3' Plus Strand G C C C G C G 3' Synthesis 5' 3' Plus Strand G C C C G Minus Strand C G G G C 5' 3' Complex Dissociation 3' 5' Plus Strand G C C C G Complementary replication as + the simplest copying 5' 3' mechanism of RNA Minus Strand C G G G C
5' 3' Plus Strand G C C C G 5' 3' GAA UCCCG AA GAA UCCCGUCCCG AA Plus Strand G C C C G Insertion C 3' G 5' 3' Minus Strand G G C G G C GAAUCCA GAAUCC CGA A 3' 5' Deletion Plus Strand G C C C G C Point Mutation Mutations represent the mechanism of variation in nucleic acids
Σ Φ I 1 dx / dt = f Q ji x - x I j + j i i i j f j Q 1j Σ i Φ = Σ ; Σ = 1 ; f x x Q ij = 1 I j I 2 + i i i i i n-d(i,j) d(i,j) Q = (1-p) p ij f j Q 2j p .......... Error rate per digit d(i,j) .... Hamming distance I j (A) + I j I j + f j Q jj between I and I i j [A] = a = constant f j Q nj I j I n + Chemical kinetics of replication and mutation
Master sequence Mutant cloud n o i t a r t n e c n o C Sequence space The molecular quasispecies in sequence space
Decrease in mean fitness due to quasispecies formation The increase in RNA production rate during a serial transfer experiment
Ronald Fisher‘s conjecture of optimization of mean fitness in populations does not hold in general for replication-mutation systems: In general evolutionary dynamics the mean fitness of populations may also decrease monotonously or even go through a maximum or minimum. It does also not hold in general for recombination of many alleles and general multi-locus systems in population genetics . Optimization of fitness is, nevertheless, fulfilled in most cases, and can be understood as a useful heuristic.
Selection of Q � -RNA through replication in a capillary G.Bauer, H.Otten, J.S. McCaskill, Proc.Natl.Acad.Sci.USA 90 :4191, 1989
Bacterial Evolution S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants . Science 272 (1996), 1802-1804 D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot. Genomic evolution during a 10,000-generation experiment with bacteria . Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812
Epochal evolution of bacteria in serial transfer experiments under constant conditions S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants . Science 272 (1996), 1802-1804
12 25 Distance within sample Distance to ancestor 10 20 8 15 6 10 4 5 2 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 Time (Generations) Time (Generations) Variation of genotypes in a bacterial serial transfer experiment D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot. Genomic evolution during a 10,000-generation experiment with bacteria . Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812
Evolutionary design of RNA molecules D.B.Bartel, J.W.Szostak, In vitro selection of RNA molecules that bind specific ligands . Nature 346 (1990), 818-822 C.Tuerk, L.Gold, SELEX - Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase . Science 249 (1990), 505-510 D.P.Bartel, J.W.Szostak, Isolation of new ribozymes from a large pool of random sequences . Science 261 (1993), 1411-1418 R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, High-resolution molecular discrimination by RNA . Science 263 (1994), 1425-1429
Amplification Diversification Genetic Diversity Selection Cycle Selection Desired Properties ? ? ? no Selection cycle used in yes applied molecular evolution to design molecules with predefined properties
Retention of binders Elution of binders n m u l o c c i h p a r g o t a m o r h C The SELEX technique for the evolutionary design of aptamers
A A A A A G G C C G G G U U U G C U C C U C G U G C C -3’ 5’- = adenylate A 27 16 � 4 = 1.801 10 possible different sequences = uridylate U = cytidylate C Combinatorial diversity of sequences: N = 4 { = guanylate G Combinatorial diversity of heteropolymers illustrated by means of an RNA aptamer that binds to the antibiotic tobramycin
A A A A A 5’- G G C C G G G U U U G C U C C U C G U G C C -3’ U U A C A 5’- G G C G G G U A G 3’- C C G U A G C U C C A U C Formation of secondary structure of the tobramycin binding RNA aptamer L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Chemistry & Biology 4 :35-50 (1997)
The three-dimensional structure of the tobramycin aptamer complex L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Chemistry & Biology 4 :35-50 (1997)
A ribozyme switch E.A.Schultes, D.B.Bartel, One sequence, two ribozymes: Implication for the emergence of new ribozyme folds . Science 289 (2000), 448-452
Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase ( A ) and a natural cleavage ribozyme of hepatitis- � -virus ( B )
The sequence at the intersection : An RNA molecules which is 88 nucleotides long and can form both structures
Reference for the definition of the intersection and the proof of the intersection theorem
Two neutral walks through sequence space with conservation of structure and catalytic activity
Sequence of mutants from the intersection to both reference ribozymes
Reference for postulation and in silico verification of neutral networks
No new principle will declare itself from below a heap of facts. Sir Peter Medawar, 1985
Coworkers Walter Fontana , Santa Fe Institute, NM Christian Reidys, Christian Forst , Los Alamos National Laboratory, NM Peter Stadler , Universität Leipzig, GE Ivo L.Hofacker, Christoph Flamm, Universität Wien, AT Bärbel Stadler, Andreas Wernitznig , Universität Wien, AT Michael Kospach, Ulrike Langhammer, Ulrike Mückstein, Stefanie Widder Jan Cupal, Kurt Grünberger, Andreas Svr č ek-Seiler, Stefan Wuchty Ulrike Göbel, Institut für Molekulare Biotechnologie, Jena, GE Walter Grüner, Stefan Kopp, Jaqueline Weber
Recommend
More recommend