Eulerian Multi-Fluid models for the description of polydisperse coalescing sprays : evaluation of various numerical strategies F. Doisneau, F. Laurent
Context – Coalescing sprays Astrophysics Meteorology (planets, nebulae) (raindrops, particles) Injection (diesel engine) Solid propellant combustion Chemical synthesis Aeronautical chambers (TiO 2 , CNT precursor) 5 ème Biennale de Mathématiques, Guidel 2011 2
Context – Acknowledgements PhD Thesis 2009-2012 (DGA grant) « Modélisation et simulation d’écoulements diphasiques chargés de particules polydispersées nanométriques dans les moteurs à propergol solide à l’aide d’une approche Eulérienne dite Multi-Fluide » Marc Massot, Frédérique Laurent (EM2C, Maths) Joël Dupays (ONERA, DEFA) PEA Nano (ONERA), trainee (EM2C) Industries computes SPS DEFA Combustion Maths SNPE Transfers distributes DSNA … Plasmas (Murrone 2011) 5 ème Biennale de Mathématiques, Guidel 2011 3
Sprays I – Physics conditionned by size Phenomena : Gas-droplet interactions (drag, heating, evaporation) Droplet-droplet interactions (coalescence, rebound, break-up) Subgridscale models (turbulence, acoustics, nanophysics…) Key role of droplet size: Coupled MULTI-FLUID MULTI-FLUID ? NANO ? Multi-Velocity Modeling Lagrangian P230 granulometry diffusion Agitation τ ~r 2 stiff ū =u gaz Relaxation crossings brownian ballistic Coalescence 0.1 1 10 100 radius (µm) 5 ème Biennale de Mathématiques, Guidel 2011 4
Sprays II – Kinetic approach Huge number of droplets Few properties each Kinetic Modelling statistic description through a number distribution function (NDF) satisfies a Boltzmann like equation (mesoscopic scale) : droplet size heat exchanges free transport evaporation sources drag (coalescence…) coalescence collision partner concentration collision parameters 5 ème Biennale de Mathématiques, Guidel 2011 5
Sprays III – Eulerian « Multi-Fluid » method Multi-Fluid ( Massot et Laurent 01 and 04 ) : Size-velocity coupling : (choice = surface ) Size discretization: (finite volumes) Unique velocity per section : Size distribution in each section : (2 moments, Dufour 05 ) Sections (2 moments) Sections (1 moment) 5 ème Biennale de Mathématiques, Guidel 2011 6
Coalescence I – Equations coalescence n (evaporation) gas coupling Transfers in phase space k s s k-1 s section (fixed bounds, one velocity) Size moments conservation eq. (pressureless fluid) for each section k 1 size moment 2 size moments 5 ème Biennale de Mathématiques, Guidel 2011 7
Coalescence II – Computation Domains Number, mass and momentum creation and disappearance Between two sections i and j to form k : where cross velocity collision/coalescence mass NDF i NDF j section difference efficiencies 5 ème Biennale de Mathématiques, Guidel 2011 8 8
Coalescence III – Integral computation methods Integrand with exponential functions ~3.N 2 double integral computations per cell and timestep Newton-Cotes quadrature (equidistributed, 25 to 81points) : tabulated Adaptive abscissa quadrature (4 points are enough) : Computation times on an academic test case (no transport) : 5 ème Biennale de Mathématiques, Guidel 2011 9 9
Coalescence IV – Conclusion on the model Two Size moment MF with adaptive quadrature : Polydispersion ok Coalescence (+efficiency models) ok Validation? Computational efficiency? DNS point of view (no subgrid scale effects) is a first step before: Droplet crossings (Fréret 2008, Chalons 2010) LES modeling (Wunsch 2009) Nanometric modelling (Charles 2009) Brownian aspects (Friedlander 2000, Simoes 2006) Further work for comprehensive modeling 5 ème Biennale de Mathématiques, Guidel 2011 10 10
D’herbigny I – Experimental setup Droplet growth in a fog : D’Herbigny experiment m analytical solution simulation with : one size moment method r two size moment method m Initially for collision efficiency laws : r D’Herbigny experiment (ONERA) 5 ème Biennale de Mathématiques, Guidel 2011 11
D’herbigny II – Analytical model framework Kinetic modelling with size/velocity corellation assumption : Conclusions : Steady formulation Linearized coalescence Decoupling of velocity 5 ème Biennale de Mathématiques, Guidel 2011 12
D’herbigny III – Projection on size modes PDE becomes a system of ODEs : where is a length we define a coalescing length : Rem : link with classical approach (Smoluchowski 17) 5 ème Biennale de Mathématiques, Guidel 2011
D’herbigny IV – Constant kernel solution Poisson’s law : Refined Two size moment simulation (green) Poisson’s Law (+) Gaussian approximation (blue) Gaussian when > 5 ! Constant kernel model validation with ~ 10 5 5 ème Biennale de Mathématiques, Guidel 2011 14
D’herbigny V – General solution 5 ème Biennale de Mathématiques, Guidel 2011 15
D’herbigny VI – Simulations « Transport » in size phase space (Two size moment Multi-Fluid) Simulation Comparison : One Size Moment MF (200 sect.) Two Size Moment MF (80 sect.) radius (µm) Pseudo numerical diffusion lower with two size moments 5 ème Biennale de Mathématiques, Guidel 2011 16
D’herbigny VII– Conclusions Linearized Bimodal case : derivation of an analytical formula useful for chemical synthesis (Jeong 2005) code validation Experimental results (D’Herbigny 2001) code validation collision efficiency models 5 ème Biennale de Mathématiques, Guidel 2011 17
Conclusions Our DNS polydisperse coalescing model : validated implemented in an industrial code (JCP 2011) SRM simulation (EUCASS 2011) Eulerian Lagrangian Average diameter ( µ m) and droplet trajectories Perspectives : effect of coalescence on instabilities (EUCASS 2011) num. Strategy for 2-way coupling (AIAA 2011) secondary break-up gaussian velocity coalescence kernel nanometric modeling 5 ème Biennale de Mathématiques, Guidel 2011 18
Questions? References : J. Dupays, Y. Fabignon, P. Villedieu, G. Lavergne, and J. L. Estivalezes. Some aspects of two-phase flows in solid propellant rocket motors. Progress in Astronautics and Aeronautics, vol 185, AIAA, 2000. S. Friedlander. Smoke, Dust and Haze, Fundamentals of Aerosol Dynamics. Oxford University Press, 2000. F. X. D’Herbigny and P. Villedieu. Etude expérimentale et numérique pour la validation d’un modèle de coalescence. RF1/05166 DMAE, ONERA, 2001. F. Laurent, M. Massot, and P. Villedieu. Eulerian Multi-Fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays. J. Comp. Phys., 194:505–543, 2004. G. Dufour and P. Villedieu. A second-order Multi-Fluid model for evaporating sprays. M2AN Math. Model. Numer. Anal., 39(5):931–963, 2005. J. I. Jeong and M. Choi. A bimodal particle dynamics model considering coagulation, coalescence and surface growth, and its application to the growth of titania aggregates. Journal of Colloid and Interface Science, 281(2):351– 359, 2005. D. Wunsch. Theoretical and numerical study of collision and coalescence - Statistical modeling approaches in gas droplet turbulent flows. PhD thesis, Institut de Mécanique des Fluides de Toulouse (IMFT), 2009. M. Simoes. Modélisation eulérienne de la phase dispersée dans les moteurs à propergol solide, avec prise en compte de la pression particulaire. PhD thesis, INP Toulouse, 2006. J. Mathiaud. Etude de systèmes de type gaz-particules. PhD thesis, ENS Cachan, 2006. L. Freret, S. de Chaisemartin, F. Laurent, P. Vedula, R.O. Fox, O. Thomine, J. Reveillon and M. Massot. Eulerian moment models for polydisperse weakly collisional sprays : model and validation. Proceedings of the Summer Program, CTR. 2008. F. Charles. Modélisation mathématique et étude numérique d’un aérosol dans un gaz raréfié. Application à la simulation du transport de particules de poussière en cas d’accident de perte de vide dans ITER. PhD thesis, ENS Cachan, 2009. A. Murrone and P. Villedieu. Numerical modeling of dispersed two-phase flows. Aerospace Lab, 2:1–13, 2011. Communications : F. Doisneau, F. Laurent, A. Murrone, J. Dupays, and M. Massot. Evaluation of Eulerian Multi-Fluid models for the simulation of dynamics and coalescence of particles in solid propellant combustion. To be submitted to J. Comp. Phys. 2011. F. Doisneau, F. Laurent, J. Dupays, and M. Massot. Two-way coupled simulation of acoustic waves in polydispersed coalescing two- phase flows : application to Solid Rocket Motor instabilities. To appear in 8 th European Conference on Aerospace Science EUCASS , St Petersburg 2011. F. Doisneau, A. Sibra, F. Laurent, J. Dupays, and M. Massot. Numerical strategy for two-way coupling in polydisperse dense sprays : application to solid rocket motor instabilities. To appear in 47 th AIAA Joint Propulsion Conference , San Diego 2011. 5 ème Biennale de Mathématiques, Guidel 2011 19
Recommend
More recommend