Estimation of group action with energy constraint arXiv:1209.3463v3 Masahito Hayashi Graduate School of Mathematics, Nagoya University Centre for Quantum Technologies, National University of Singapore
Contents • Summary of estimation in group covariant family • Estimation of group action , U(1), SU(2), and SO(3) with average energy restriction • Practical construction of asymptotically optimal estimator • Application to uncertainty relation (Robertson type)
Estimation of group action H f G Given a projective unitary representation of on . Unknown estimate measurement Input state Unitary to be estimated ( ) f g g M E ( , ) M :Our operation 1 1 ˆ ˆ ˆ ( , ) ( , ) ( , ) R g g R e g g R e gg :error function g Average error when the true parameter is * ˆ ˆ D D E E ( ) : ( , )Tr ( ) ( ) ( ) G R g g M dg f g f g , R g prior: D D D D ( ) : ( ) ( ) M M dg Bayesian: , , R R g G D D D D ( ): max ( ) M M Mini-max: , R R g g
Group covariant measurement H :Hilbert space Holevo 1979 G :group f :projective unitary representation M G A POVM taking values in is called covariant if * ( ) ( ) ( ) ( ) f g M B f g M gB M ( ) G G : Set of POVMs taking the values in M cov ( ) G : Set of covariant POVMs taking values in G M M ( ) cov ( ) G M G is included in * ( ) ( ): ( ) ( ) ( ) M B M B f g Tf g dg T B
Group-action-version of quantum Hunt-Stein theorem G Invariant probability measure exists for G when is compact. Then, the following equations hold. D D D D min ( , ) min ( , ) M M , R R M M M M , ( ) , ( ) M G M G D min ( , ) M R M :pure, ( ) M G cov D min ( , ) M , R M :pure, ( ) M G cov G The following relation holds even when is not compact. D D D D min ( , ) min ( , ) M M R R M M M M , ( ) :pure, ( ) M G M G cov
Fourier transform and inverse Fourier transform on group ˆ G : Set of irreducible unitary representation of G ˆ 2 2 U ( ): ( ) L G L ˆ G 2 ( U U ) L : Set of HS operators on 2 ˆ 2 F : ( ) ( ) L G L G : Fourier transform * F ( [ ]) : ( ) ( ) ( ) d f g g dg G ˆ -1 2 2 F : ( ) ( ) L G L G : Inverse Fourier transform -1 F [ ]( ): Tr ( ) A g d f g A ˆ G
Optimization with Energy constraint via inverse Fourier transform Energy constraint Tr H E 1 1 2 ˆ ˆ F ( ): ( , )| [ ]( )| ( ) D X R e g X g d g R G Our target is D D D D min ( , ) min ( , ) M M R R M M M M , ( ) :pure, ( ), M G M G cov Tr Tr H E H E min ( ) D X R 2 2 ( ), 1 X L G X , H E ˆ ˆ 2 2 ( ) : { ( ) | } L G X L G X H X E , H E
Example: G ˆ G ( ) ig 2 2 ( ) , f g e ( , ) ( ) , H Q R g g g g 2 min min ( , ) | Tr D M Q E R 2 M ( ) S M ( ( )) L cov d g d 2 1 2 2 2 F min | [ ]( ) | | ( ) | g g E 2 2 2 ( ) L 1 2 2 min Q P E 4 2 E ( ) L 2 Minimum is attained with 2 ( ) 4 e E E
Mathieu Function Periodic differential operator 2 2 cos2 P q Q Minimum Eigen function space eigenvalue 0 ( ) a q ce ( , ) 2 q p,even (( , ]) L 0 2 2 2 se ( , ) 2 ( ) q p,odd (( , ]) b q L 2 2 2 1 ( ) ce ( , ) a q q 2 a,even (( , ]) L 1 2 2 se ( , ) q 1 ( ) 2 b q a,odd (( , ]) L 1 2 2
Estimation of U(1) ( , ) 1 cos( ), R g g g g ikg ( ) , f g k e k 2 H k k k k min min ( , ) | Tr D M H E R ˆ 2 M (U(1)) S M ( (U(1))) L cov 2 min cos I Q P E 2 (( , ]) L p,even Optimal input is (2 / ) sa s ce ( , ) 0 q max 1 constructed by sE 0 4 0 s 1 1 as E 2 8 128 E E 3 7 2 2 E 1 2 0 E as E 16
Graphs
Estimation of SU(2) 1 k k 1 ( , ) 1 ( ), R g g gg 1 H I 1 2 k 2 2 0 k 2 2 ˆ 2 2 p,odd (( , ]) L (SU(2)) L Reduce to min min ( , ) | Tr D M H E R ˆ 2 M (SU(2)) S M ( L (SU(2))) cov 1 Q 2 min cos 2 I P E 4 2 (( , ]) L p,odd (8 / ) 1 sb s 2 max 1 ( ) s E Optimal input is 4 4 s 0 constructed by 3 9 7 3 as E se ( , ) q 11 2 32 2 E E 2 3 2 5 2 E 1 0 E as E 3 6 3
Graphs
Factor system of Chiribella 2011 projective unitary representation Factor system ( , ') 1 i g g : ( ) ( ') ( ') e f g f g f gg e ( , ') i g g L : { } , ' g g ˆ[ ] : Set of projective irreducible representation G L with the factor system L 1 1 2 ˆ ˆ ˆ F ( ) : ( , ) | [ ]( ) | ( ) D X R e g X g dg L R G
Estimation of SO(3) 1 k k 1 ( , ) (3 ( )), R g g gg 1 H I 1 k 2 2 2 0 k 2 ˆ 2 2 2 a,odd (( , ]) p,odd (( , ]) L L (SO(3)) L Reduce to or min min ( , ) | Tr D M H E R ˆ 2 M (SO(3)) S M ( (SO(3))) L cov 1 2 min { | cos | | | | } I Q P E 4 2 L a,odd Integer case 1 2 min { | cos | | | | } I Q P E 4 2 L p,odd Half integer case
Integer case 1 2 min { | cos | | | | } I Q P E 4 2 L a,odd (2 / ) 1 sa s 1 max 1 ( ) s E 4 4 0 s 9 81 E 2 8 128 E E 3 E E 0 E 2 4 2 ce ( , ) q Optimal input is constructed by 1
Half integer case 1 2 min { | cos | | | | } I Q P E 4 2 L p,odd (2 / ) 1 sb s 2 max 1 ( ) s E 4 4 0 s 9 81 E 2 8 128 E E 1 3 1 3 5 3 3 1 ( ) 2 ( ) 2 E E E 4 4 4 3 48 3 se ( , ) q Optimal input is constructed by 2
Graphs Κ SO � 3 � � E � & Κ SO � 3 � , � � 1 � � E � 1.4 1.2 1.0 0.8 0.6 0.4 0.2 E 0 5 10 15 20 Thick line expresses the projective case, and Normal line expresses the representation case
G Non-compact Example: 2 f : Heisenberg representation X L 2 ( 2 ( ) ) L multiplicity Minimize x yi 2 2 1 2 F ( )| [ ]( )| x y X dxdy 2 2 under 2 2 ( ) X Q P I X E 1 Minimum value: 2 E
How to derive minimum 2 2 2 2 F : ( ) ( ) ( ) L L L Fourier transform 1 1 1 1 F F F F = F F F F = ( ) , ( ) Q I P Q P I P Q 2 1 1 2 2 2 F 1 [ ] X Via , minimizing problem is equivalent with 2 2 Q Q Minimize 1 2 1 1 2 2 ( ) ( ) P Q P Q E under 2 1 1 2 2 2 By choosing suitable coordinate, minimizing problem is equivalent with Minimum value 2 2 Minimize Q Q Uncertainty 1 2 12 E relation 2 2 P P E under 1 1
Practical realization of asymptotically optimal estimator G 2 H , k H k k k U(1) k k Assume that satisfies 2 | | 0 k F [ ] is even function k MLE U M 1 U M 2 n U M n This method attains the optimal performance.
Recommend
More recommend