estimation of group action with energy constraint
play

Estimation of group action with energy constraint arXiv:1209.3463v3 - PowerPoint PPT Presentation

Estimation of group action with energy constraint arXiv:1209.3463v3 Masahito Hayashi Graduate School of Mathematics, Nagoya University Centre for Quantum Technologies, National University of Singapore Contents Summary of estimation in


  1. Estimation of group action with energy constraint arXiv:1209.3463v3 Masahito Hayashi Graduate School of Mathematics, Nagoya University Centre for Quantum Technologies, National University of Singapore

  2. Contents • Summary of estimation in group covariant family • Estimation of group action  , U(1), SU(2), and SO(3) with average energy restriction • Practical construction of asymptotically optimal estimator • Application to uncertainty relation (Robertson type)

  3. Estimation of group action H f G Given a projective unitary representation of on . Unknown estimate measurement Input state Unitary to be estimated   ( ) f g g M   E ( , ) M :Our operation     1 1 ˆ ˆ ˆ ( , ) ( , ) ( , ) R g g R e g g R e gg :error function g Average error when the true parameter is    * ˆ ˆ D D E E ( ) : ( , )Tr ( ) ( ) ( ) G R g g M dg f g f g , R g   prior:   D D D D ( ) : ( ) ( ) M M dg Bayesian:  , , R R g G  D D D D ( ): max ( ) M M Mini-max: , R R g g

  4. Group covariant measurement H :Hilbert space Holevo 1979 G :group f :projective unitary representation M G A POVM taking values in is called covariant if  * ( ) ( ) ( ) ( ) f g M B f g M gB M ( ) G G : Set of POVMs taking the values in M cov ( ) G : Set of covariant POVMs taking values in G  M M ( ) cov ( ) G M G is included in     * ( ) ( ): ( ) ( ) ( ) M B M B f g Tf g dg T B

  5. Group-action-version of quantum Hunt-Stein theorem  G Invariant probability measure exists for G when is compact. Then, the following equations hold.    D D D D min ( , ) min ( , ) M M  , R R     M M M M , ( ) , ( ) M G M G   D min ( , ) M R   M :pure, ( ) M G cov   D min ( , ) M  , R   M :pure, ( ) M G cov G The following relation holds even when is not compact.    D D D D min ( , ) min ( , ) M M R R     M M M M , ( ) :pure, ( ) M G M G cov

  6. Fourier transform and inverse Fourier transform on group ˆ G : Set of irreducible unitary representation of G ˆ   2 2 U ( ): ( ) L G L    ˆ G 2 ( U U ) L : Set of HS operators on   2 ˆ  2 F : ( ) ( ) L G L G : Fourier transform      * F ( [ ]) : ( ) ( ) ( ) d f g g dg    G ˆ  -1 2 2 F : ( ) ( ) L G L G : Inverse Fourier transform   -1 F [ ]( ): Tr ( ) A g d f g A    ˆ   G

  7. Optimization with Energy constraint via inverse Fourier transform Energy constraint   Tr H E       1 1 2 ˆ ˆ F ( ): ( , )| [ ]( )| ( ) D X R e g X g d g R G Our target is    D D D D min ( , ) min ( , ) M M R R     M M M M , ( ) :pure, ( ), M G M G cov     Tr Tr H E H E  min ( ) D X R  2  2  ( ), 1 X L G X , H E ˆ ˆ    2 2 ( ) : { ( ) | } L G X L G X H X E , H E

  8. Example: G   ˆ G   ( )          ig 2 2 ( ) , f g e ( , ) ( ) , H Q R g g g g      2 min min ( , ) | Tr D M Q E R    2  M  ( ) S M ( ( )) L cov       d g d   2          1 2 2 2   F min | [ ]( ) | | ( ) | g g E         2 2 2    ( ) L   1        2 2 min Q P E 4   2 E  ( ) L  2  Minimum is attained with    2 ( ) 4 e E E

  9. Mathieu Function Periodic differential operator  2 2 cos2 P q Q Minimum Eigen function space eigenvalue    0 ( ) a q  ce ( , ) 2 q p,even (( , ]) L 0 2 2     2 se ( , ) 2 ( ) q p,odd (( , ]) b q L 2 2 2    1 ( ) ce ( , ) a q q  2 a,even (( , ]) L 1 2 2    se ( , ) q  1 ( ) 2 b q a,odd (( , ]) L 1 2 2

  10. Estimation of U(1)      ( , ) 1 cos( ), R g g g g  ikg ( ) , f g k e k   2 H k k k   k    min min ( , ) | Tr D M H E R    ˆ 2 M (U(1)) S M ( (U(1))) L cov          2 min cos I Q P E   2    (( , ]) L p,even Optimal input is (2 / ) sa s     ce ( , ) 0 q max 1 constructed by sE 0  4 0 s  1 1    as E  2 8 128  E E   3   7 2 2 E    1 2 0 E as E  16

  11. Graphs

  12. Estimation of SU(2) 1      k k     1    ( , ) 1 ( ), R g g gg  1  H I 1 2 k    2 2 0 k 2 2    ˆ 2 2 p,odd (( , ]) L (SU(2)) L Reduce to      min min ( , ) | Tr D M H E R  ˆ   2 M (SU(2)) S M ( L (SU(2))) cov   1 Q         2   min cos 2 I P E   4   2    (( , ]) L p,odd (8 / ) 1 sb s     2 max 1 ( ) s E Optimal input is  4 4 s 0 constructed by   3 9 7 3     as E  se ( , ) q 11 2 32 2 E E  2   3   2 5 2 E   1 0  E as E  3 6 3

  13. Graphs

  14. Factor system of Chiribella 2011 projective unitary representation Factor system    ( , ') 1 i g g : ( ) ( ') ( ') e f g f g f gg e   ( , ') i g g L : { } , ' g g ˆ[ ] : Set of projective irreducible representation G L with the factor system L      1 1 2 ˆ ˆ ˆ F ( ) : ( , ) | [ ]( ) | ( ) D X R e g X g dg L R G

  15. Estimation of SO(3)    1 k k          1 ( , ) (3 ( )), R g g gg  1  H I 1 k   2  2 2 0 k 2       ˆ 2 2 2 a,odd (( , ]) p,odd (( , ]) L L (SO(3)) L Reduce to or      min min ( , ) | Tr D M H E R  ˆ   2 M (SO(3)) S M ( (SO(3))) L cov  1        2 min { | cos | | | | } I Q P E  4   2 L  a,odd  Integer case   1         2 min { | cos | | | | } I Q P E  4   2 L p,odd   Half integer case

  16. Integer case 1        2 min { | cos | | | | } I Q P E 4   2 L a,odd (2 / ) 1 sa s     1 max 1 ( ) s E  4 4 0 s  9 81    E   2 8 128 E E   3  E E    0 E   2 4 2  ce ( , ) q Optimal input is constructed by 1

  17. Half integer case 1        2 min { | cos | | | | } I Q P E 4   2 L p,odd (2 / ) 1 sb s     2 max 1 ( ) s E  4 4 0 s  9 81    E   2 8 128 E E   1 3 1 3 5 3 3       1 ( ) 2 ( ) 2 E E E   4 4 4 3 48 3  se ( , ) q Optimal input is constructed by 2

  18. Graphs Κ SO � 3 � � E � & Κ SO � 3 � , � � 1 � � E � 1.4 1.2 1.0 0.8 0.6 0.4 0.2 E 0 5 10 15 20 Thick line expresses the projective case, and Normal line expresses the representation case

  19. G   Non-compact Example: 2 f : Heisenberg representation X   L  2 (  2 ( ) ) L multiplicity Minimize  x yi    2 2 1 2 F ( )| [ ]( )| x y X dxdy 2  2 under    2 2 ( ) X Q P I X E 1 Minimum value: 2 E

  20. How to derive minimum      2 2 2 2 F : ( ) ( ) ( ) L L L Fourier transform 1 1        1 1 F F F F = F F F F = ( ) , ( ) Q I P Q P I P Q 2 1 1 2 2 2   F  1 [ ] X Via , minimizing problem is equivalent with    2 2 Q Q Minimize 1 2 1 1        2 2 ( ) ( ) P Q P Q E under 2 1 1 2 2 2 By choosing suitable coordinate, minimizing problem is equivalent with Minimum value    2 2 Minimize Q Q Uncertainty 1 2 12 E relation     2 2 P P E under 1 1

  21. Practical realization of asymptotically optimal estimator     G  2 H , k H k k k U(1)   k k   Assume that satisfies 2 | | 0 k  F [ ] is even function k MLE      U M 1      U M 2  n       U M n This method attains the optimal performance.

Recommend


More recommend