Erlang(n) risk models with risky investments Corina Constantinescu Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences joint work with H. Albrecher, University of Linz & RICAM E. Thomann, Oregon State University Special Semester on Stochastics with emphasis in Finance RICAM, Linz, December 2nd, 2008
U t = u + ct − � N ( t ) k =1 X k • u : initial surplus • c : premium rate 3 • N ( t ) = number of claims 2.5 2 up to time t (Poisson/renewal) 1.5 1 • X k : claim size 0.5 (light/heavy) 0 • T k : time of claim −0.5 • τ n = T n − T n − 1 : −1 inter-arrival time ( τ 0 = 0) −1.5 • X , τ are independent −2 0 2 4 6 8 10 12 14 16 • the net profit condition c − λµ > 0 holds • Time of ruin T u = inf t ≥ 0 { t : U t < 0 | U 0 = u } • Probability of ruin in finite time Ψ( u , t ) = P ( T u < t ) • Probability of ruin Ψ( u ) = P ( T u < ∞ ) .
Gerber-Shiu function e − δ T u w ( U ( T u − ) m δ ( u ) = E , | U ( T u ) | )1( T u < ∞ ) | U (0) = u � �� � � �� � surpl.im.bef.ruin deficit at ruin • w = 1 (LT of the time of ruin) � � e − δ T u 1( T u < ∞ ) | U (0) = u m δ ( u ) = E = φ δ ( u ) � ∞ e − δ t Ψ( u , t ) dt = φ δ ( u ) δ 0 • w = 1, δ = 0 (Probability of ruin) m 0 ( u ) = E (1( T u < ∞ ) | U (0) = u ) = Ψ( u )
Gerber-Shiu function on the Cramer-Lundberg model By conditioning on the time and size of the first claim... • Integral equation. � ∞ � u + ct λ e − ( δ + λ ) t m δ ( u ) = m δ ( u + ct − y ) dF ( y ) dt 0 0 � ∞ � ∞ λ e − ( δ + λ ) t + w ( u + ct , y − u − ct ) dF ( y ) dt 0 u + ct with boundary condition, lim u →∞ m δ ( u ) = 0 .
Through integration by parts... Integro-differential equation. • Gerber-Shiu function: � u ( − c d du + λ + δ ) m δ ( u ) = λ m δ ( u − x ) f X ( x ) dx 0 � ∞ + w ( u , x − u ) f X ( x ) dx λ u � �� � = ω ( u ) � lim u →∞ m δ ( u ) = 0 with boundary conditions, m δ (0) = λ c ˆ ω ( ρ )
For special penalties... • Gerber-Shiu function � u ( − c d du + λ + δ ) m δ ( u ) = λ m δ ( u − x ) f X ( x ) dx + λω ( u ) 0 • Laplace transform of the time of ruin � u ( − c d du + λ + δ ) φ δ ( u ) = λ φ δ ( u − x ) f X ( x ) dx + λ F X ( u ) 0 • Probability of ruin � u ( − c d du + λ )Ψ( u ) = λ Ψ( u − x ) f X ( x ) dx + λ F X ( u ) 0
Classical results-Probability of ruin Z u ( − c d du + λ )Ψ( u ) = λ Ψ( u − x ) f X ( x ) dx + λ F X ( u ) 0 u →∞ Ψ( u ) = 0 lim • If claim sizes are exponentially bounded (light claims) then c − λµ e − Ru , u → ∞ Ψ( u ) ∼ − λ ˆ f ′ X ( − R ) − c Cramer(1930) • If claims sizes are heavy-tailed (heavy claims) then Ψ( u ) ∼ kF I ( u ) , u → ∞ Embrechts et al(1997)
Classical results-LT of finite-time ruin probability Z ∞ „ − c d « du + λ + δ φ δ ( u ) = λ φ δ ( u − x ) f X ( x ) dx + λ F X ( u ) 0 u →∞ φ δ ( u ) = 0 lim • If light claims then • Laplace transform of time of ruin � 1 � R + 1 δ e − Ru , φ δ ( u ) ∼ u → ∞ , − λ ˆ ρ X ( − R ) − c f ′ δ → 0 φ δ ( u ) = Ψ( u ) lim • (single) Laplace transform of the finite-time ruin probability � 1 � ∞ � 1 R + 1 e − δ t Ψ( u , t ) dt ∼ e − Ru , u → ∞ . − λ ˆ ρ f ′ X ( − R ) − c 0 (Gerber & Shiu, 1998)
Classical results-Gerber-Shiu functions Z u ( − c d du + λ + δ ) m δ ( u ) = λ m δ ( u − x ) f X ( x ) dx + λω ( u ) 0 u →∞ m δ ( u ) = 0 lim • If light claims then � ∞ � ∞ w ( x , y )( e Rx − e − ρ x ) f X ( x + y ) dxdy m δ ( u ) ∼ λ 0 0 e − Ru − λ ˆ f ′ X ( − R ) − c Gerber&Shiu(1998)
Sparre Andersen model with investments • The claim number process N ( t ) is a renewal process • We allow an additional non-traditional feature: investments in a risky asset with returns modeled by a stochastic process Z t , described by an SDE • Denote U k := U ( T k ). The model U k = Z U k − 1 − X k τ k is a discrete Markov process. We refer to this process as renewal jump-diffusion process .
Renewal jump-diffusion process 7 6 5 4 3 2 1 0 −1 0 2 4 6 8 10 12 We assume that the company invests all its money continuously in a risky asset with the price modeled by a geometric Brownian motion.
Question: When we invest everything in a risky asset, do the ruin probabilities have a faster decay than when there is no investment? Answer: When investments in an asset whose price follows a GBM, the ruin probabilities have a power decay Ψ( u ) ∼ Cu − k , as u → ∞ , where k depends on the parameters of the investments or on those of the claim sizes.
Objective • Analyze the asymptotic behavior of the ruin probability Ψ( u ) and the Laplace transform of the time of ruin φ δ ( u ) (implicitly the Laplace transform of the finite-time ruin probability) as the initial capital (surplus) u → ∞ . • Determine a general integro-differential equation for m δ ( u ) . Main tools • integration by parts • regular variation theory
Assumptions (equation) • Inter-arrival times { τ k } k ≥ 0 have densities f τ satisfying an ODE with constant coefficients L ( d dt ) f τ ( t ) = 0 with homogeneous or non-homogeneous boundary conditions. (example: f τ ( t ) = λ e − λ t = ⇒ ( d dt + λ ) f τ ( t ) = 0) • The price of the investments Z u t up to time t starting with an initial capital u is modeled by a non-negative stochastic process with an infinitesimal generator A
Assumptions (asymptotic behavior) We identify two cases: • Light claims. Claim sizes { X k } k ≥ 0 have well-behaved distributions F X with exponentially bounded tails 1 − F X ( x ) ≤ ce − α x , α, c ∈ R , ∀ x ≥ 0 • Heavy-tailed claims. Claim sizes { X k } k ≥ 0 have regularly varying distribution 1 − F X ( x ) ∼ Cx − α l ( x ) , as x → ∞ (Notation: 1 − F X ( x ) ∈ R ( − α )) where C is a positive constant and l ( x ) is a slowly varying function.
U k = Z U k − 1 − X k τ k Theorem. Let h be a sufficiently smooth function of the risk process such that E ( h ( U 1 ) | U 0 = u ) = h ( u ). If f τ satisfies the ODE of order n , with constant coefficients � d � d � n � k � L f τ ( t ) = f τ ( t ) = 0 α k dt dt k =0 and homogeneous boundary conditions, then �� u � L ∗ ( A ) h ( u ) = α 0 h ( u − x ) f X ( x ) dx + ω ( u ) 0 The proof uses semigroup theory, Kolmogorov backward equation and integration by parts.
Probability of ruin • Since the probability of non-ruin Φ( u ) satisfies the hypothesis and then the IDE. • As a consequence the probability of ruin also satisfies this IDE �� u � L ∗ ( A )Ψ( u ) = α 0 Ψ( u − x ) f X ( x ) dx + F X ( u ) 0 � Ψ( u ) = 1 if u < 0 lim u →∞ Ψ( u ) = 0 Recall: • A : infinitesimal generator of the investment process, • F X claim sizes distribution � d dt ) = � n � k • L ∗ ( d dt ) is adjoint to L ( d k =0 α k dt
More IDEs Laplace transform of the time of ruin �� u � L ∗ ( A − δ ) φ δ ( u ) = α 0 φ δ ( u − x ) f X ( x ) dx + F X ( u ) 0 Gerber-Shiu function �� u � L ∗ ( A − δ ) m δ ( u ) = α 0 m δ ( u − x ) f X ( x ) dx + ω ( u ) 0 Recall: • A infinitesimal generator of the investment process, • F X claim sizes distribution � d � k dt ) = � n • L ∗ ( d dt ) is adjoint to L ( d k =0 α k dt
Classical Cramer-Lundberg model • The surplus model: N ( t ) X U ( t ) = u + ct − X k . k =0 • The ODE satisfied by the exponential inter-arrival times L ( d dt ) f τ ( t ) = ( d ⇒ L ∗ ( d dt ) = ( − d dt + λ ) f τ ( t ) = 0 = dt + λ ) • The SDE satisfied by the investment process t = cdt ; A = c d dZ u du • Then the IDE for Gerber-Shiu function � u ( − c d du + δ + λ ) m δ ( u ) = λ m δ ( u − x ) f X ( x ) dx + λω ( u ) 0 � �� � L ∗ ( A − δ )
Cramer-Lundberg model with investments • The surplus model: Z t Z t N ( t ) X U ( t ) = u + ct + a U ( s ) ds + σ U ( s ) dW S − X k . 0 0 k =0 • The ODE satisfied by the exponential inter-arrival times L ( d dt ) f τ ( t ) = ( d ⇒ L ∗ ( d dt ) = ( − d dt + λ ) f τ ( t ) = 0 = dt + λ ) • The SDE satisfied by the investment process t dW t ; A = σ 2 u 2 d 2 du 2 + ( c + au ) d dZ u t = ( c + aZ u t ) dt + σ Z u 2 du • Then the IDE satisfied by the probability of ruin � u ( − A + λ )Ψ( u ) = λ Ψ( u − y ) dF X ( y ) dy + λ F X ( u ) 0
Asymptotic behavior of the probability of ruin Z u − σ 2 u 2 d 2 „ « du 2 − ( c + au ) d du + λ Ψ( u ) = λ Ψ( u − y ) dF X ( y ) dy + λ F X ( u ) 2 0 • For small volatility ( 2 a σ 2 > 1): Ψ( u ) ∼ Cu − k , u → ∞ • If claim sizes are exponentially bounded (light claims) (Norberg&Kalashnikov(2002), Frolova et.al(2002), C.&Thomann(2005)) k = 2 a σ 2 − 1 • If claims sizes are regularly varying (heavy-tailed claims) (Paulsen(2002)) � � α, 2 a k = max σ 2 − 1 • For large volatility ( 2 a σ 2 < 1): Ψ( u ) = 1 , ∀ u > 0 . (Norberg&Kalashnikov(2002), Frolova et.al(2002))
Recommend
More recommend