equivalence of regular expressions with converse on
play

Equivalence of regular expressions with converse on relations An - PowerPoint PPT Presentation

Equivalence of regular expressions with converse on relations An alternative presentation of the proof by Bloom , sik and Stefanescu Paul Brunet and Damien Pous ENS de Lyon 17 juin 2013 Decidability in REL Paul Brunet and Damien Pous (ENS


  1. Equivalence of regular expressions with converse on relations An alternative presentation of the proof by Bloom , Ésik and Stefanescu Paul Brunet and Damien Pous ENS de Lyon 17 juin 2013 Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 1 / 22

  2. Converse Converse on languages : Mirror 1 ∨ ≔ 1 ( x · w ) ∨ ≔ w ∨ · x L ∨ ≔ { w ∨ | w ∈ L } Converse on relations R ∨ ≔ { ( y , x ) | ( x , y ) ∈ R } a b c d Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 2 / 22

  3. Converse Converse on languages : Mirror 1 ∨ ≔ 1 ( x · w ) ∨ ≔ w ∨ · x L ∨ ≔ { w ∨ | w ∈ L } Converse on relations R ∨ ≔ { ( y , x ) | ( x , y ) ∈ R } a b c d Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 2 / 22

  4. Plan Kleene Algebrae with converse 1 Construction of the closure of an automaton 2 On examples 3 Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 3 / 22

  5. CKA Table of Contents Kleene Algebrae with converse 1 Construction of the closure of an automaton 2 On examples 3 Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 4 / 22

  6. CKA Equivalence We’ll use different notions of equivalence on expressions e , f on an alphabet X : We write � e � for the language denoted by a regular expression e . Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 5 / 22

  7. CKA Equivalence We’ll use different notions of equivalence on expressions e , f on an alphabet X : Language equality : � e � = � f � ; We write � e � for the language denoted by a regular expression e . Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 5 / 22

  8. CKA Equivalence We’ll use different notions of equivalence on expressions e , f on an alphabet X : Language equality : � e � = � f � ; Equivalence for language models : ∀ Σ , ∀ σ ∈ Σ ∗ X , ˆ σ ( f ) : ; σ ( e ) = ˆ e ≡ Lang f We write � e � for the language denoted by a regular expression e . Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 5 / 22

  9. CKA Equivalence We’ll use different notions of equivalence on expressions e , f on an alphabet X : Language equality : � e � = � f � ; Equivalence for language models : ∀ Σ , ∀ σ ∈ Σ ∗ X , ˆ σ ( f ) : ; σ ( e ) = ˆ e ≡ Lang f S 2 � X , ˆ Equivalence for relation models : ∀ S , ∀ σ ∈ P � σ ( f ) : e ≡ Rel f . σ ( e ) = ˆ We write � e � for the language denoted by a regular expression e . Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 5 / 22

  10. CKA Kleene Algebrae I A Kleene Algebra (i) is an algebraic structure � K , + , · , ∗ , 0 , 1 � satifying : � K , + , · , 0 , 1 � is an idempotent semiring : 1 � K , + , 0 � is a  a + ( b + c ) = ( a + b ) + c  commutative  a + b = b + a  idempotent a + 0 = a  monoid  a + a = a   a ( bc ) = ( ab ) c � K , · , 1 � is a  1 a = a monoid a 1 = a   a ( b + c ) = ab + ac  Distributivity  ( a + b ) c = ac + bc  laws 0 a = 0   a 0 = 0  Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 6 / 22

  11. CKA Kleene Algebrae II The ∗ operation satisfy : 2 1 + aa ∗ � a ∗ 1 + a ∗ a � a ∗ b + ax � x ⇒ a ∗ b � x b + xa � x ⇒ ba ∗ � x ∆ Where a � b ⇒ a + b = b . ⇐ The last axioms can be replaced by a number of things. (i). As presented in [Koz94]. Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 7 / 22

  12. CKA All is well � e � = � f � Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 8 / 22

  13. CKA All is well � e � = � f � ⇔ KA ⊢ e = f Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 8 / 22

  14. CKA All is well � e � = � f � ⇔ KA ⊢ e = f ⇔ e ≡ Lang f Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 8 / 22

  15. CKA All is well � e � = � f � ⇔ KA ⊢ e = f ⇔ e ≡ Lang f ⇔ e ≡ Rel f Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 8 / 22

  16. CKA Kleene Algebra with Converse Theorem [BES95] A complete axiomatization of the variety L ∨ generated by regular languages with converse consists of the axioms for KA and the following : ( a + b ) ∨ = a ∨ + b ∨ ( a · b ) ∨ = b ∨ · a ∨ ( a ∗ ) ∨ = ( a ∨ ) ∗ a ∨∨ = a . Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 9 / 22

  17. CKA Equivalence in L ∨ Let e , f ∈ Reg ∨ ( X ) . Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 10 / 22

  18. CKA Equivalence in L ∨ Let e , f ∈ Reg ∨ ( X ) . We compute τ ( e ) , τ ( f ) ∈ Reg ( X ∪ X ′ ) . Where ∀ x ∈ X , ν ( x ) = x ′ and ∀ x ∈ X , τ ( x ) = x τ ( 1 ) = 1 ν ( 1 ) = 1 τ ( e 1 · e 2 ) = τ ( e 1 ) · τ ( e 2 ) ν ( e 1 · e 2 ) = ν ( e 2 ) · ν ( e 1 ) τ ( e 1 + e 2 ) = τ ( e 1 ) + τ ( e 2 ) ν ( e 1 + e 2 ) = ν ( e 1 ) + ν ( e 2 ) τ ( e ∗ ) = τ ( e ) ∗ ν ( e ∗ ) = ν ( e ) ∗ τ ( e ∨ ) = ν ( e ) ν ( e ∨ ) = τ ( e ) X ′ ≔ { x ′ | x ∈ X } is a disjoint copy of X . Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 10 / 22

  19. CKA Equivalence in L ∨ Let e , f ∈ Reg ∨ ( X ) . We compute τ ( e ) , τ ( f ) ∈ Reg ( X ∪ X ′ ) . Where ∀ x ∈ X , ν ( x ) = x ′ and ∀ x ∈ X , τ ( x ) = x τ ( 1 ) = 1 ν ( 1 ) = 1 τ ( e 1 · e 2 ) = τ ( e 1 ) · τ ( e 2 ) ν ( e 1 · e 2 ) = ν ( e 2 ) · ν ( e 1 ) τ ( e 1 + e 2 ) = τ ( e 1 ) + τ ( e 2 ) ν ( e 1 + e 2 ) = ν ( e 1 ) + ν ( e 2 ) τ ( e ∗ ) = τ ( e ) ∗ ν ( e ∗ ) = ν ( e ) ∗ τ ( e ∨ ) = ν ( e ) ν ( e ∨ ) = τ ( e ) X ′ ≔ { x ′ | x ∈ X } is a disjoint copy of X . Furthermore � τ ( e ) � = � τ ( f ) � ⇔ e ≡ Lang f Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 10 / 22

  20. CKA Languages vs. Relations a � aa ∨ a ??? in L ∨ in REL ∨ a � aa ∨ a = aaa if xRy then xRyR ∨ xRy which means xRR ∨ Ry so R ⊆ RR ∨ R Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 11 / 22

  21. CKA Languages vs. Relations a � aa ∨ a ??? in L ∨ in REL ∨ a � aa ∨ a = aaa if xRy then xRyR ∨ xRy which means xRR ∨ Ry so R ⊆ RR ∨ R Theorem [EB95] A complete set of axioms for the variety REL ∨ generated by regular relations with converse consists on the axioms for L ∨ and the axiom a � aa ∨ a . Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 11 / 22

  22. CKA Equivalence in REL ∨ Theorem [BES95] cl ( � τ ( e ) � ) = cl ( � τ ( f ) � ) ⇔ e ≡ Rel f Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 12 / 22

  23. CKA Equivalence in REL ∨ Theorem [BES95] cl ( � τ ( e ) � ) = cl ( � τ ( f ) � ) ⇔ e ≡ Rel f  ( X ∪ X ′ ) ∗ ( X ∪ X ′ ) ∗ →   ǫ �→ ǫ  Let ¯ . be the function wx ′ �→ xw   x ′ w �→ wx  Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 12 / 22

  24. CKA Equivalence in REL ∨ Theorem [BES95] cl ( � τ ( e ) � ) = cl ( � τ ( f ) � ) ⇔ e ≡ Rel f  ( X ∪ X ′ ) ∗ ( X ∪ X ′ ) ∗ →   ǫ �→ ǫ  Let ¯ . be the function wx ′ �→ xw   x ′ w �→ wx  We define the relation � on ( X ∪ X ′ ) ∗ : ∆ ⇐ ⇒ ∃ u 1 , w , u 2 : u = u 1 wwwu 2 ∧ v = u 1 wu 2 . u � v Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 12 / 22

  25. CKA Equivalence in REL ∨ Theorem [BES95] cl ( � τ ( e ) � ) = cl ( � τ ( f ) � ) ⇔ e ≡ Rel f  ( X ∪ X ′ ) ∗ ( X ∪ X ′ ) ∗ →   ǫ �→ ǫ  Let ¯ . be the function wx ′ �→ xw   x ′ w �→ wx  We define the relation � on ( X ∪ X ′ ) ∗ : ∆ ⇐ ⇒ ∃ u 1 , w , u 2 : u = u 1 wwwu 2 ∧ v = u 1 wu 2 . u � v cl ( A ) is the closure of A for � : cl ( A ) = { v | ∃ u ∈ A : u � ∗ v } . Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 12 / 22

  26. Construction Table of Contents Kleene Algebrae with converse 1 Construction of the closure of an automaton 2 On examples 3 Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 13 / 22

  27. Construction Closure of an automaton a ′ a a 0 1 2 3 Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 14 / 22

  28. Construction Closure of an automaton a a ′ a a 0 1 2 3 Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 14 / 22

  29. Construction Closure of an automaton a a ′ a a 0 1 2 3 a a ′ a ′ a a a 0 1 2 3 4 5 6 b Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 14 / 22

  30. Construction Closure of an automaton a a ′ a a 0 1 2 3 a a a ′ a ′ a a a 0 1 2 3 4 5 6 b Decidability in REL ∨ Paul Brunet and Damien Pous (ENS de Lyon) 17 juin 2013 14 / 22

Recommend


More recommend