entanglement spectrum of aklt like states effective field
play

Entanglement spectrum of AKLT like states - effective field theory - PowerPoint PPT Presentation

NQS 2017 Oct 27, YITP, Kyoto Entanglement spectrum of AKLT like states - effective field theory approach A. Tanaka, National Institute for Materials Science w. S. Takayoshi, Geneva U. References AT Nov. 2017 issue of in


  1. NQS 2017 Oct 27, YITP, Kyoto Entanglement spectrum of AKLT like states - effective field theory approach A. Tanaka, National Institute for Materials Science w. S. Takayoshi, Geneva U. References AT Nov. 2017 issue of 「数理科学」( in Japanese ) ; AT and ST, in preparation; ST, P. Pujol and AT, Phys. Rev. B 94 235159 (2016); ST, K. Totsuka and AT, Phys. Rev. B 91 155136 (2015); K.-S. Kim and AT, Mod. Phys. Lett. B 29 1540054 (2015)

  2. Contents of talk = belongs to ongoing project with following objective: Haldane-style mapping of AF spin systems in d-dimensions 1980’s and 90’s: main target = stat-mech properties e.g. 1d: S=half-integer vs integer 2d: mod S=2 properties on square lattice QPT w.r.t. varying theta-value Question: Can we extract the topological protection (STP vs non-STP) and entanglement properties of the ground state of disordered (Haldane gap/AKLT-like) phases in this language? ・ Complementary to MPS/tensor-network schemes. ・ A personal motivation: demystify path integral approach to SPT by X. Chen et al, Science 2012 via somewhat more conventional language.

  3. One-slide-summary of our main message Consequence of having total derivative topological term within effective action Surface effects arise depending on how you wrap up your space-time: [ ( ) ] φ τ S τ edge Edge action τ x (Gapped [ ] ( ) Two sides of same coin φ τ System) S top , x x (bulk-boundary correspondence) [ ] ( ) τ Ψ φ (path integral) x GS wave function Suggests (and we confirm) that: Effective action w. top-tem x might be useful for studying GS entanglement properties!

  4. In previous work we started by deriving, Haldane style, effective actions, to arrive at the above mentioned bulk-boundary correspondence. In this talk, I will take an easier and perhaps more accessible (for many people) route: I will start directly with the well-known AKLT wavefunction and extract, in the large-S limit,the same topological information. Then I will move on to discuss entanglement properties in light of this.

  5. AKLT wave function for integer S (i.e. S valence bonds per link): e.g. S=2 AKLT ( ) ∏ S † † † † = − AKLT a a a a vac ↑ + ↓ ↓ + ↑ PBC j j 1 j j 1 Constraint on Schwinger boson ( j ) + = † † a a a a phys 2 S phys ↑ ↑ ↓ ↓ j j j j ( ) Spin coherent state basis { }  ∏ 2S Ω ≡ ↑ + † † u a v a vac ↓ j j j j j j    ( ) ( ) u  2 2   ∈ + = Ω = σ j 1 u , v CP , u v 1 , u , v   j j j j j j j v   j { }  ( ) ∏ Arovas-Auerbach-Haldane ⇒ Ψ = Ω = S AKLT u v - v u PRL 1988 + + AKLT j j j 1 j j 1 j

  6. ~ ~  −       u u u v It is convenient to convert to (overscores +         + ≡ ≡ 2 j 2 j 2 j 1 2 j 1 ,         ~ ~ the representation: =CCs) v v v       u   + + 2 j 2 j 2 j 1 2 j 1 θ     i ~ cos   u where:     ≡ 2 i   θ ~     v e φ  i  i sin i i   2  ( ) ← i=even ≡ θ φ θ φ θ     u n sin cos , sin sin , cos Observe that now ( )   σ = i i i i i i  u , v    ← i=odd − i i    v n i i So using this rep. just means: we are inverting the coordinate axes in spin space at the odd sites. So far all of this is just formal rewriting, and is completely general. ~ ~ ~ ~ = + Why are we doing this? Because: u v - v u u u v v + + + + 2 j 2 j 1 2 j 2 j 1 2 j 2 j 1 2 j 2 j 1

  7. Formula for inner product of CP 1 spinors: (familiar e.g. from “double exchange” in anomalous Hall effect)   1 + ⋅   ( )    1 n n   2 i ~ ~ ~ ~ + =  i j ˆ u u v v   exp A n , n , z ˆ z i j i j i j     2 2 A  Area of spherical triangle  n on unit sphere   n j S     − Ω ⋅ Ω i large S 1 ∏   Ψ 2 = ⇒ Ω ≈ − Ω + i i 1   + AKLT i 1 i   2 i   ⇔ ≈ n n behaves smoothly in continuum limit + i 1 i        ( ) ( ) = − − − ⇒ Motivates derivative expansion for A n , n , n A n , - n , n n ( x ). 1 2 3 1 2 3 Accounting for fact that spin-space axes are inverted on odd sites, we find:  [ ] continuum form ω n ( x )

  8. c.f. N. Nagaosa

  9. AKLT wave function in continuum (large-S) form  ( ) 1 ∫  [ ] S − ∂ 2  [ ] − ω dx n i n ( x ) ~ x Ψ = 2 g 2 n ( x ) e e AKLT Replace in above “x” with imaginary time “ τ ”. This is then identical to the Feynman weight for a single spin S/2 object (quantum rotor) at the end of open AKLT chains. e.g. S=2 AKLT  1 ∫ ( )  [ ] S − ∂ 2 − ω τ dx n i n ( ) τ − ~ ≡ = S 2 g 2 W e edge e e Feynman spin Berry phase for fractional spin S/2 object This demonstrates that : Same quantum number fractionalization as edge state is inherent in the bulk AKLT wave function even under PBC ! (also note similarities with X. Chen et al, Science 2012) .

  10. consistent with existence of an underlying effective action w. top-term (in this case, this is just Haldane’s NLσ model+θ term) = S S τ edge WZ Edge action τ cf T.K. Ng PRB 1994 θ    ∫  [ ] ( ) τ ⋅ ∂ × ∂ i d dx n n n τ = τ π x S n , x e 4 x (Gapped top Two sides of same coin for integer S) x (bulk-boundary correspondence) ( )  [ ] ( ) θ = 2 π τ Ψ (path integral) S n x GS wave function Suggests that: Effective action w. top-tem x might be useful for studying GS entanglement properties!

  11. We now make contact with our proposed action (ST, Pujol, AT, PRB 2016) for detecting SPT states = + General form: S S S eff kinetic top total derivative NLσ

  12. Proposed action (ST, Pujol, AT, PRB 2016) for d=1 = + General form: S S S eff kinetic top total derivative NLσ  1+1d: easy-plane Haldane gap phase ( ) ≡ φ φ n cos , sin , 0 Planar version of Haldane’s well -known mapping to “O(3) NLσ+top -term” { } [ ( ) ] ( ) ( ) 1 ∫ φ τ = τ ∂ φ + ∂ φ O(2) NLσ 2 2 S , x d dx τ kinetic x 2 g [ ] { ( ) ( ) } ( ) 1 ∫ = τ ∂ ∂ φ − ∂ ∂ φ φ τ = π vortex Berry phase term Q d dx S top , x i S Q , τ τ π v x x v 2 τ + ∆ τ τ ∆ φ ∆ φ Reduces to counting τ τ ∆ φ ∆ φ × space-time vorticity x x τ i S of shaded region. ∆ φ ∆ φ τ τ ∆ φ ∆ φ Sachdev 2001 x x τ − ∆ τ − ( = + + j 1 j even ) j 1 j 2 More tractable than the original O(3) model. x

  13. Digress using 1+1d case. First rewrite in manifest total-derivative form: θ ( ) ∫ = τ ∂ − ∂ ≡ ∂ φ θ = π S: integer 1 S i d dx a a , a , 2 S τ τ µ µ π top x x 2 2 − φ φ ≡ − ∂ = ∂ φ Not a pure gauge : c.f. i i a i ( e ) ( e ) µ µ µ Surface effect on spatial edge: τ S ∫ ∫ = ± τ = ± τ ∂ φ S edge i S d a i d BBC τ τ 2 x Fractional spin at end of spin chain (T.K. Ng 1994) Surface effect on temporal edge: τ ∫ [ ] φ ( ) ( ) ( ) − ∫ − i S dx a Ψ φ = φ τ ∝ = − S S Q x x D , x e eff e 1 x , φ init 1 x ∫ Topology-sensistive/nonsensitive = ∂ φ ∈ Z Q dx π x x when S=odd/even. 2 BBC: consistent w. fact that S=odd is SPT state under TR-symmetry.

  14. The continuum form of he AKLT wave function gives consistent results. θ ≡ Planar limit is accessed by putting cos 0 . ( ) ∫ 1 − ∂ φ 2 [ ] ( ) dx 1 ∫ ~ − π x Ψ φ = ≡ ∂ φ ∈ iS Q 2 g x e e , Q dx Z x π AKLT x x 2

  15. Proposed action (ST, Pujol, AT, PRB 2016) for d=2 = + General form: S S S eff kinetic top total derivative NLσ 2+1d: “Haldane gap phase”(=AKLT-like state) on square lattice  σ [ ] ( )    ( ) 1 ∫ 2 = ≡ ∂ O(3) NLσ τ = τ ε ∂ † † 2 n z z , a iz z S kinetic a , r d d r a µ µ µ λµν µ ν =CP 1 2 2 g [ ] π   1 ( ) S ∫ = τ ε ∂ ∂ τ = 2 Q d d r ( a ) S top a , r i Q , λµν λ µ ν µ π monopole Berry phase term m m 2 2 ( ) τ + ∆ τ Q xy time = ∆ Q Q monopole xy monopole ( ) τ Q xy A suitably coarse- grained version of Haldane’s monopole Berry phases (1988) . Can be derived systematically as “coupled wires” of 1+1d WZW models. Provides field theory representation for “weak” SPTs.

Recommend


More recommend