enhanced sampling and free energy applications in
play

Enhanced Sampling and Free Energy Applications in Biomolecular - PowerPoint PPT Presentation

Enhanced Sampling and Free Energy Applications in Biomolecular Modeling Emad Tajkhorshid NIH Center for Macromolecular Modeling and Bioinformatics Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign


  1. Enhanced Sampling and Free Energy Applications in Biomolecular Modeling Emad Tajkhorshid NIH Center for Macromolecular Modeling and Bioinformatics Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Computational Biophysics Workshop - Urbana, Sep 2017

  2. NIH P41 Center for Macromolecular Modeling and Bioinforma9cs University of Illinois at Urbana-Champaign www.ks.uiuc.edu MD papers 103,000 VMD users 19,000 NAMD users 17,000 NIH funded 1.4 million web visitors 228,000 tutorial views

  3. Serving a Large and Fast Growing Community • Deploying Center’s flagship programs NAMD and VMD on all major computational platforms from commodity computers to supercomputers • Consistently adding user-requested features • simulation, visualization, and analysis • Covering broad range of scales (orbitals to cells) and data types • Enhanced software accessibility • QwikMD, interactive MDFF, ffTk, simulation in the Cloud, remote visualization

  4. Exploiting State of the Art Hardware Technology • Software available and optimized on all national supercomputing platforms (even before they come online) • Decade-long, highly productive relationship with NVIDIA • The first CUDA Center of Excellence funded by NVIDIA • Consistently exploring opportunities for new hardware technology • Remote visualization • Virtual Reality • Handheld devices

  5. Technology Made Highly Accessible to the Community interactive MDFF QwikMD VMD Plugin for Setup and Analysis of NAMD Simulations Developed primarily for experimental users

  6. Vigorous Training Through Hands-On Workshops 47 Workshops on Computational Biophysics ——————————————————————————— In addition to 5 others: • Online Workshops on Simulating Membrane Channels • In-residence workshops for visiting researchers • Local workshops on hardware and coding 1500+ Researchers Trained Since 2003 ——————————————————————————— High school students to professional faculty Computational to experimental backgrounds National to international and minority communities 1636 Pages of Self-Study Tutorial Material ——————————————————————————— Slides, recorded lectures, and video tutorials also available

  7. Microscopic View of Molecular Phenomena ✦ Mechanisms in Molecular Biology ✦ Molecular Basis of Disease ✦ Drug Design ✦ Nano-biotechnology Binding of a small molecule to a binding site Y. Wang & E.T. PNAS 2010

  8. Microscopic View of Molecular Phenomena ✦ Mechanisms in Molecular Biology ✦ Molecular Basis of Disease ✦ Drug Design ✦ Nano-biotechnology Drug binding to a GPCR Dror, …, Shaw, PNAS, 108:13118–13123 (2011)

  9. Microscopic View of Molecular Phenomena Nano-biotechnology Functionalized nanosurface with antibodies HIV subtype identification Lab Chip 2012 Created by nanoBIO Node tools

  10. Most Detailed and Dynamic Microscopic View S. Mansoor, …, E. Tajkhorshid, E. Gouaux, Nature, 2016.

  11. Battling the Timescale non-Equilibrium MD simulations Free Energy Methods Enhanced Sampling Techniques 12

  12. Battling the Timescale - Case I Steered Molecular Dynamics is a non-equilibrium method by nature • A wide variety of events that are inaccessible to conventional molecular dynamics simulations can be probed. • The system will be driven, however, away from equilibrium, resulting in problems in describing the energy landscape associated with the event of interest. W G ≥ Δ Second law of thermodynamics

  13. Steered Molecular Dynamics constant force constant velocity (250 pN) (30 Å/ns)

  14. Jarzynski’s Equality G W Δ Transition between two equilibrium states e - β W p(W) W G ≥ Δ T T λ = λ (t) λ = λ i λ = λ f work W heat Q p(W) G G G Δ = − f i C. Jarzynski, Phys. Rev. Lett., 78 , 2690 (1997) W G e e − β − Δ β = C. Jarzynski, Phys. Rev. E, 56 , 5018 (1997) 1 β = k T In principle, it is possible to obtain free B energy surfaces from repeated non-equilibrium experiments.

  15. Constructing the Potential of Mean Force 4 trajectories v = 0.03, 0.015 Å/ps k = 150 pN/Å f ( t ) k [ z ( t ) z vt ] = − − − 0 t W ( t ) d t vf ( t ) " " = ∫ 0

  16. Three fold higher barriers SF cytoplasm periplasm NPA AqpZ 22.8 kcal/mol GlpF 7.3 kcal/mol Y. Wang, K. Schulten, and E. Tajkhorshid Structure 13, 1107 ( 2005)

  17. Battling the Timescale - Case II Biased (nonequilibrium) simulations J. Li, …, E. Tajkhorshid. (2015) COSB , 31: 96-105. ✦ Neurotransmitter Uptake » Norepinephrine, serotonin, dopamine, glutamate,… ✦ Gastrointestinal Tract » Active absorption of nutrients » Secretion of ions ✦ Kidneys » Reabsorption » Secretion ✦ Pharmacokinetics of all drugs » Absorption, distribution, elimination » Multi-drug resistance in cancer cells

  18. COMPLEX Diverse Structural Transitions Involved Na-coupled Secondary Neurotransmitter Transporter Secondary Phosphate Antiporter ATP-Driven Primary ABC Exporter Non-equilibrium methods are required.

  19. Complex Processes Require Complex Treatments Empirical search for reaction coordinates and biasing protocols Work Optimized Protocol F r e e E n e r g y h - R e f i n i n g A l g o r i t h m s P a t C a l c u l a t i o n s Mahmoud Moradi Reaction Coordinate M. Moradi and ET (2013) PNAS , 110:18916–18921. M. Moradi and ET (2014) JCTC , 10: 2866–2880. M. Moradi, G. Enkavi, and ET (2015) Nature Comm. , 6:8393.

  20. Aggressive Search of the Space Op9mal Path Inward-Facing TMD Refined TMD Outward-Facing 21

  21. Non-equilibrium Driven Molecular Dynamics: 
 Applying a time-dependent external force to induce the transition Along various pathways/mechanisms (collective variables) Harmonic constant IniTal state Final state Biasing potenTal Collec9ve variables: Total simulaTon RMSD, distance, Tme R g , angle, … orienta9on quaternion M. Moradi and ET (2013) PNAS , 110:18916–18921. M. Moradi and ET (2014) JCTC , 10: 2866–2880. M. Moradi, G. Enkavi, and ET (2015) Nature Comm. , 6:8393.

  22. Progressively Optimizing the Biasing Protocol/Collective Variable using non-Equilibrium Work as a Measure of the Path Quality Mechanism Work (a) (b) 500 25 ° work (kcal/mol) 400 20 ° 300 β 15 ° 200 10 ° 100 0 80 ° (c) (d) 500 work (kcal/mol) 65 ° 400 300 50 ° γ 200 35 ° 100 20 ° 0 10 ° 20 ° 30 ° 40 ° 50 ° 0 5 10 15 20 t (ns) α Example set taken from a subset of 20 ns biased simulaTons

  23. Mechanistic Insight From Transition Pathways in ABC exporters from Non-Equilibrium Simulations OF β } →α→γ→β 500 →γ→α→β (a) → d →α→γ→β α→β →α→β→γ work ( kcal/mol ) → d →γ→α→β → d →α→β→γ 400 } →β→ d →α→γ γ β→α→γ 300 →β→α→γ → d →β→α→γ 200 } IF-c →β→γ→α Cytoplasm Periplasm →γ→β→α → d →γ→β→α →β→ d →γ→α (β,γ)→α 100 → d →β→γ→α 0 0 40 80 120 160 t ( ns ) 400 200 IF-o 11 11 α 65 65 41 41 10 10 73 73 41 41 10 10 42 42 M. Moradi and ET (2013) PNAS , 110:18916–18921. M. Moradi and ET (2014) JCTC , 10: 2866–2880. α γ β

  24. NBD Doorknob Mechanism M. Moradi and ET (2013) PNAS , 110:18916–18921.

  25. Describing a Complete Cycle (Adding Substrate) Requiring a Combination of Multiple Collective Variables 30 r x 20 ns 30 r x 20 ns IF IF apo bound 12 replicas x 40 ns (H1/H7) 12 replicas x 40 ns (H1/H7) 150 24 replicas x 20 ns (H1/H7) 50 replicas x 20 ns (10 Hs) 200 replicas (2D) x 5 ns replicas 50 replicas x 20 ns OF OF apo bound 30 r x 20 ns 30 r x 20 ns 30 r x 20 ns

  26. Simula'on*protocols* # of Replicas Collective Transition Technique Variables Runtime 1 BEUS (Q 1 ,Q 7 ) = 12 40 ns 0.5 � s IF a OF a 2 SMwST {Q} = 1000 1 ns 1 � s 3 BEUS {Q} = 50 20 ns 1 � s 4 BEUS Z Pi = 30 40 ns 1.2 � s IF a IF b 5 BEUS ({Q}, Z Pi ) = 30 40 ns 1.2 � s 6 OF a BEUS Z Pi = 30 40 ns 1.2 � s OF b 7 BEUS ({Q}, Z Pi ) = 30 40 ns 1.2 � s 8 BEUS (Q 1 ,Q 7 ) = 24 20 ns 0.5 � s 9 BEUS Z Pi = 15 30 ns 0.5 � s IF b OF b 10 2D BEUS = ( RMSD, Z Pi ) 200 5 ns 1 � s 11 SMwST ({Q}, Z Pi ) = 1000 1 ns 1 � s 12 BEUS ({Q}, Z Pi ) = 50 20 ns 1 � s 13 Full Cycle BEUS ({Q}, Z Pi ) 150 50 ns = 7.5 � s Total Simulation Time 18.7 � s GlpT 1 3 2 Crystal Structure 13 4 5 Full Cycle 6 7 BEUS 12 PHSM 11 SMwST Nonequilibrium 10 8 9 BLUE WATER M. Moradi, G. Enkavi, and ET (2015) Nature Communica9on , 6: 8393.

  27. M. Moradi, G. Enkavi, and ET (2015) Nature Communica9on , 6: 8393.

  28. Battling the Timescale - Case III Multiscale Simulations Membrane Budding/Fusion Combining multiple replica simulations and coarse- grained models to describe membrane fusion

  29. Workflow for Multi-Scale Modeling Parametrically Defined Sine Function Initial Frame Final Frame simulation box periodic image Δ t z x y Christopher Mayne, Tajkhorshid Lab

  30. Workflow for Multi-Scale Modeling G40 G30 G20 G10 G1 Christopher Mayne, Tajkhorshid Lab

Recommend


More recommend