energy transfer rates in turbulent channels
play

Energy transfer rates in turbulent channels with drag reduction at - PowerPoint PPT Presentation

Energy transfer rates in turbulent channels with drag reduction at constant power input Davide Gatti, M. Quadrio, Y. Hasegawa, B. Frohnapfel and A. Cimarelli EDRFCM 2017, Villa Mondragone, Monte Porzio Catone www.kit.edu KIT The Research


  1. Energy transfer rates in turbulent channels with drag reduction at constant power input Davide Gatti, M. Quadrio, Y. Hasegawa, B. Frohnapfel and A. Cimarelli EDRFCM 2017, Villa Mondragone, Monte Porzio Catone www.kit.edu KIT โ€“ The Research University in the Helmholtz Association

  2. The drag reduction experiment bulk velocity: ๐‘‰ ๐‘ turbulent ๐‘ + mean ๐šพ kinetic energy dissipation rate pressure gradient: ๐‘ง โˆ’ d๐‘ž d๐‘ฆ = ๐œ ๐‘ฅ ๐‘ฆ โ„Ž skin-friction coefficient: ๐‘จ X ๐‘” = 2๐œ ๐‘ฅ ๐ท 2 ๐œ๐‘‰ ๐‘ 2โ„Ž pumping power ๐‘‰ ๐‘ง (per unit area): ๐ ๐’’ = โˆ’ d๐‘ž ๐ ๐’’ d๐‘ฆ โ„Ž๐‘‰ ๐‘ pumping power Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 2 18.04.2017

  3. Integral energy budget Reynolds decomposition: ๐‘ฃ(๐‘ง) + ๐‘ฃ โ€ฒ ๐‘ฆ, ๐‘ง, ๐‘จ, ๐‘ข ๐‘ฃ ๐‘ฆ, ๐‘ง, ๐‘จ, ๐‘ข = 1 ๐‘ฃ 2 2 ๐œ mean kinetic energy (MKE) budget: ๐‘ธ ๐’’ = ๐‘„ ๐‘ฃ๐‘ค + ฮฆ 1 2 ๐œ๐‘ฃ โ€ฒ2 turbulent kinetic energy (TKE) budget: ๐‘„ ๐‘ฃ๐‘ค = ๐‘ global energy budget: ๐‘ธ ๐’’ = ๐šพ + ๐‘ Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 3 18.04.2017

  4. The drag reduction experiment bulk velocity: ๐‘‰ ๐‘ turbulent ๐‘ + mean ๐šพ kinetic energy dissipation rate pressure gradient: ๐‘ง โˆ’ d๐‘ž d๐‘ฆ = ๐œ ๐‘ฅ ๐‘ฆ โ„Ž skin-friction coefficient: ๐‘จ X ๐‘” = 2๐œ ๐‘ฅ ๐ท 2 ๐œ๐‘‰ ๐‘ 2โ„Ž pumping power control ๐‘‰ ๐‘ง (per unit area): power input ๐ ๐’’ = โˆ’ d๐‘ž ๐ ๐’’ d๐‘ฆ โ„Ž๐‘‰ ๐‘ ๐ ๐’… pumping power drag reduction rate: at (statistical) steady state: ๐ท ๐‘” ๐‘บ = 1 โˆ’ ๐ ๐ฎ = ๐ p + ๐ ๐’… = ๐‘ + ๐šพ ๐ท ๐‘”,0 Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 4 18.04.2017

  5. How does drag reduction affect energy transfer rates? a (seemingly) trivial question with a non trivial answer โ€ข Ricco et al., JFM (2012): substantial increase of ๐‘ caused by control with spanwise wall motions โ€ข Frohnapfel et al., (2007): ๐‘ needs to be reduced to achieve drag reduction โ€ข Martinelli, F., (2009): drag reduction obtained via feedback control aimed at minimizing ๐‘ Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 5 18.04.2017

  6. Goal We investigate how skin-friction drag reduction affects energy-transfer rates in turbulent channels โ€ข do different control strategies behave similarly? โ€ข do universal relationships ๐œ— = ๐œ— ๐‘† or ฮฆ = ฮฆ ๐‘† exist? โ€ข can we predict changes of ๐œ— or ฮฆ ? by producing a direct numerical simulation (DNS) database of turbulent channels modified by several drag reduction techniques Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 6 18.04.2017

  7. Comparing energy transfer rates correctly ๐ท ๐‘” successful control ๐‘บ = 1 โˆ’ ๐ท ๐‘”,0 > 0 with control power P c โˆ’ d๐‘ž ๐ ๐ช = โˆ’ d๐‘ž ๐ ๐ฎ = ๐ ๐ช + ๐ ๐ ๐‘ซ ๐’ˆ ๐‘‰ ๐‘ d๐‘ฆ โ„Ž๐‘‰ ๐‘ d๐‘ฆ = CPG = ? CFR ๐‘„ ๐‘ž and ๐‘„ ๐‘ข change between controlled and natural flow!! Hasegawa et al., JFM (2014) propose alternative forcing methods: = CPI Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 7 18.04.2017

  8. The DNS database at CPI Viscous โ€œ + โ€ units: โ€ข Box size ๐‘€ ๐‘ฆ , ๐‘€ ๐‘ง , ๐‘€ ๐‘จ = 4๐œŒโ„Ž, 2โ„Ž, 2๐œŒโ„Ž ๐‘ฃ ๐œ = ๐œ ๐‘ฅ /๐œ Resolution ฮ”๐‘ฆ + , ฮ”๐‘ง + , ฮ”๐‘จ + = 9.8, 0.47 โˆ’ 2.59, 4.9 โ€ข ๐œ€ ๐œ‰ = ๐œ‰/๐‘ฃ ๐œ โ€ข Average over 25000 viscous time units 2 ๐‘ข ๐œ‰ = ๐œ‰/๐‘ฃ ๐œ Constant total Power Input (CPI): ๐‘†๐‘“ ฮ  = ๐‘‰ ฮ  ๐œ€ P ๐‘ข โ„Ž = 6500 ๐‘‰ ฮ  = ๐œ‰ 3๐œˆ ๐‘„ ๐‘ข 3 3 = ๐‘ธ ๐’– = ๐‘„ + ๐‘„ ๐‘‘ is kept constant to ๐‘ž ๐‘†๐‘“ ฮ  ๐œ๐‘‰ ฮ  ๐›ฟ = ๐‘„ ๐‘ž = 1 โˆ’ ๐›ฟ ๐‘„ ๐‘ข = 3 1 โˆ’ ๐›ฟ ๐‘‘ ๐‘„ control power fraction , so that ๐‘„ ๐‘ข ๐‘†๐‘“ ฮ  Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 8 18.04.2017

  9. Control strategies Spanwise wall oscillations ๐œ€ ๐‘ง ๐‘ฆ ๐‘จ ๐‘‹ ๐‘ฅ = ๐ตsin(๐œ•๐‘ข) ๐ท ๐‘” ๐‘† = 1 โˆ’ ๐‘”,0 = 17.1% drag reduction ๐ท P ๐‘‘ P control power ๐›ฟ = = 0.098 ๐‘ข fraction ๐‘‰ ๐‘ = 1.028 ๐‘‰ ๐‘,๐‘ ๐‘“๐‘” Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 9 18.04.2017

  10. Control strategies Spanwise wall oscillations Opposition control ๐œ€ ๐‘ง ๐‘ง ๐‘ฆ ๐‘ฆ ๐‘จ ๐‘จ ๐‘‹ ๐‘ฅ = ๐ตsin(๐œ•๐‘ข) ๐ท ๐‘” ๐‘ง ๐‘† = 1 โˆ’ ๐‘”,0 = 17.1% drag reduction ๐ท P ๐‘‘ P control power ๐›ฟ = = 0.098 ๐‘ข fraction ๐‘‰ ๐‘ ๐‘จ = 1.028 ๐‘‰ ๐‘,๐‘ ๐‘“๐‘” Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 10 18.04.2017

  11. Control strategies Spanwise wall oscillations Opposition control ๐‘ง ๐‘ก ๐œ€ ๐‘ง ๐‘ง ๐‘ฆ ๐‘ฆ ๐‘จ ๐‘จ ๐‘‹ ๐‘ฅ = ๐ตsin(๐œ•๐‘ข) ๐‘ค ๐‘ฅ = โˆ’๐‘ค(๐‘ฆ, ๐‘ง ๐‘ก , ๐‘จ, ๐‘ข) ๐ท ๐‘” ๐‘ง ๐‘† = 1 โˆ’ ๐‘”,0 = 17.1% drag reduction ๐ท P ๐‘‘ P control power ๐›ฟ = = 0.098 ๐‘ง ๐‘ก ๐‘ข fraction ๐‘‰ ๐‘ ๐‘จ = 1.028 ๐‘‰ ๐‘,๐‘ ๐‘“๐‘” โˆ’๐‘ค ๐‘ฅ Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 11 18.04.2017

  12. Control strategies Spanwise wall oscillations Opposition control ๐‘ง ๐‘ก ๐œ€ ๐‘ง ๐‘ง ๐‘ฆ ๐‘ฆ ๐‘จ ๐‘จ ๐‘‹ ๐‘ฅ = ๐ตsin(๐œ•๐‘ข) ๐‘ค ๐‘ฅ = โˆ’๐‘ค(๐‘ฆ, ๐‘ง ๐‘ก , ๐‘จ, ๐‘ข) ๐ท ๐‘” ๐‘† = 1 โˆ’ ๐‘”,0 = 17.1% ๐‘† = 23.9% drag reduction ๐ท P ๐‘‘ P control power ๐›ฟ = = 0.098 ๐›ฟ = 0.0035 ๐‘ข fraction ๐‘‰ ๐‘ ๐‘‰ ๐‘ = 1.028 = 1.094 ๐‘‰ ๐‘,๐‘ ๐‘“๐‘” ๐‘‰ ๐‘,๐‘ ๐‘“๐‘” Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 12 18.04.2017

  13. The energy box reference flow ๐‘†๐‘“ ๐‘ = 3177 ๐‘†๐‘“ ๐œ = 199.7 Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 13 18.04.2017

  14. The energy box ๐‘‰ ๐‘ = 1.094 opposition control ๐‘†๐‘“ ๐‘ = 3474 ๐‘†๐‘“ ๐œ = 190.5 ๐‘‰ ๐‘.0 MKE dissipation rate ฮฆ increases TKE production rate ๐‘„ ๐‘ฃ๐‘ค and dissipation rate ๐œ— decrease Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 14 18.04.2017

  15. The energy box ๐‘‰ ๐‘ = 1.028 oscillating wall ๐‘†๐‘“ ๐‘ = 3267 ๐‘†๐‘“ ๐œ = 186.9 ๐‘‰ ๐‘.0 Both MKE dissipation ฮฆ and TKE production ๐‘„ ๐‘ฃ๐‘ค rates decrease, ๐‘‰ ๐‘ increases! TKE dissipation rate ๐œ— increases Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 15 18.04.2017

  16. The energy box: lesson Drag reduction reduction of TKE production rate ๐‘„ ๐‘ฃ๐‘ค Drag reduction โ‰  increase of MKE dissipation rate ฮฆ ๐‘„ ๐‘‘ surprisingly good alternative to pumping with wall oscillations! By accounting for the physics of the control and separating the contribution of ๐‘„ ๐‘‘ to ๐œ— , it is also true that: Drag reduction reduction of TKE dissipation rate ๐œ— Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 16 18.04.2017

  17. Predicting ๐‘ ๐‘บ for ๐‘บ โ‰ˆ ๐Ÿ (1) The dissipation ๐œ— in power units is linked to ๐œ— + in viscous units by the following: 3 ๐‘†๐‘“ ๐œ ๐œ— = ๐œ— + ๐‘†๐‘“ ฮ  ๐‘†๐‘“ ๐œ can be substituted with ๐‘†๐‘“ ๐‘ with the following relationship: ๐‘ž = โˆ’ d๐‘ž 2 2 ๐‘†๐‘“ ๐‘ = 3 1 โˆ’ ๐›ฟ ๐‘†๐‘“ ฮ  ๐‘†๐‘“ ๐œ , which in nondimensional form reads P d๐‘ฆ โ„Ž๐‘‰ ๐‘ this yields 3/2 ๐œ— = ๐œ— + 3 1 โˆ’ ๐›ฟ ๐‘†๐‘“ b Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 17 18.04.2017

  18. Predicting ๐‘ ๐‘บ for ๐‘บ โ‰ˆ ๐Ÿ (2) The following relation holds for both controlled and reference flow 3/2 ๐œ— = ๐œ— + 3 1 โˆ’ ๐›ฟ ๐‘†๐‘“ b by taking the ratio in the controlled and reference channel we obtain 3/2 = ๐œ— + ๐œ— 1 โˆ’ ๐›ฟ ๐‘†๐‘“ ๐‘.0 + ๐œ— 0 ๐œ— 0 ๐‘†๐‘“ ๐‘ for a reference channel flow it is known that the ๐œ— + is a mild function of ๐‘†๐‘“ ๐œ ๐œ— + = 2.54 ln ๐‘†๐‘“ ๐œ โˆ’ 6.72 Abe & Antonia, JFM (2016) ๐œ— + Hypothesis: if ๐‘† โ‰ˆ 0 then ๐‘†๐‘“ ๐œ โ‰ˆ ๐‘†๐‘“ ๐œ,0 , so we assume โ‰ˆ 1 + ๐œ— 0 Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 18 18.04.2017

  19. Predicting ๐‘ ๐‘บ for ๐‘บ โ‰ˆ ๐Ÿ (3) The relation reduces eventually to: no general statement on ๐œ— + 3/2 ๐œ— 1 โˆ’ ๐›ฟ ๐‘†๐‘“ ๐‘.0 = without considering ๐œ— 0 ๐‘†๐‘“ ๐‘ the physics of the control! opposition control wall oscillation Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 19 18.04.2017

  20. Conclusions โ€ข CPI approach is essential to assess energy transfer rates in drag- reduced flows โ€ข Energy box analysis yields two statements Drag reduction reduction of TKE dissipation rate ๐œ— Drag reduction โ‰  increase of MKE dissipation rate ฮฆ โ€ข No universal relationship between ๐‘† and ๐œ— could be found without considering the physics of the control Dr.-Ing. Davide Gatti โ€“ Energy transfer rates in turbulent channels with drag reduction 20 18.04.2017

Recommend


More recommend