end plate stability in thermally improved cladding details
play

END PLATE STABILITY IN THERMALLY-IMPROVED CLADDING DETAILS Kara - PowerPoint PPT Presentation

END PLATE STABILITY IN THERMALLY-IMPROVED CLADDING DETAILS Kara Peterman, Ph.D., Assistant Professor Dept. of Civil and Environmental Engineering, University of Massachusetts Amherst Formerly Postdoctoral Research Associate Dept. of Civil and


  1. END PLATE STABILITY IN THERMALLY-IMPROVED CLADDING DETAILS Kara Peterman, Ph.D., Assistant Professor Dept. of Civil and Environmental Engineering, University of Massachusetts Amherst Formerly Postdoctoral Research Associate Dept. of Civil and Environmental Engineering, Northeastern University Mark D. Webster, P.E., SECB, LEED AP BD+C, Senior Staff II – Structures Simpson Gumpertz & Heger, Inc. James D’Aloisio, P.E., SECB, LEED AP BD+C, Principal Klepper, Hahn & Hyatt Jerome F. Hajjar, Ph.D., P.E., CDM Smith Professor and Chair Dept. of Civil and Environmental Engineering, Northeastern University

  2. FUNDING SOURCES IN-KIND FUNDING SUPPORT

  3. INDUSTRY ADVISORY PANEL

  4. THERMAL BRIDGES AND BREAKS

  5. CLADDING DETAILS

  6. EXPERIMENTAL PROGRAM FRP CREEP TESTING (PROLONGED LOADING) BOLTED CONNECTIONS WITH NON-STEEL FILLS (MONOTONIC) SLAB- and KICKER-SUPPORTED SHELF-ANGLES (MONOTONIC) ROOF POSTS (MONOTONIC & CYCLIC) CANOPY BEAMS (MONOTONIC & CYCLIC)

  7. EXPERIMENTAL PROGRAM MITIGATION STRATEGY CONNECTION MEMBER SIZE FRP MATERIAL • FRP shims in bolted • Bolt diameter • Shelf angles: • 3 off-the-shelf pultruded corresponds to plates: polyurethane, connections • Bolt base metal insulation requirements vinylester, phenolic • Stainless steel shims/HSS material (A325, A307, • Posts/beams: • 2 proprietary products “tube shims” B8 Class 2/A304-SH1) dependent on loading • Pultruded shapes all • FRP structural member (full • Posts/beams: base vinylester or partial replacement) plate thickness GENERAL COMMENTARY • Thermal break mitigation strategy assumed to fit geometric constraints of original detail. • Thermal modeling limited to realistic, designed, constructible details. • Structural testing involves both “designed” and “over-designed” specimens.

  8. TEST MATRIX / ROOF POSTS / CANOPY BEAMS

  9. TEST RIG / ROOF POSTS / CANOPY BEAMS

  10. INSTRUMENTATION PLAN

  11. RESULTS

  12. force [kip] RESULTS force [kip]

  13. RESULTS OBSERVED LIMIT STATES Base plate buckling/yielding Bolt tension Bolt bending Bolt tension + bending Shim compression Post/beam buckling Post/beam bending Weld fracture

  14. BASE PLATE BUCKLING Presence of FRP shims does not impact base plate stability modes

  15. LIMIT STATES / ROOF POSTS ROOF POSTS - MEASURED STRENGTH RESULTS BASE PLATE YIELDING SHIM COMPRESSION P max R f h M u P n P u P u /P n P n P uB P uA P uB + P nA (P uB + P nA )/P n Test Name kip - in kip-in kip kip - kip kip kip kip - • Base plate yielding a contributing 5.334 0.85 21 95.21 17.58 5.33 0.30 - 15.87 10 25.87 - R1 factor 8.339 0.85 21 148.85 46.92 8.34 0.18 2315 24.81 10 34.81 0.02 R2 R3 4.39 1 21 92.19 17.58 4.39 0.25 - 15.37 10 25.37 - 5.567 0.85 21 99.37 17.58 5.57 0.32 - 16.56 10 26.56 - R4 R5 8.69 0.85 15 110.80 46.92 8.69 0.19 2315 18.47 10 28.47 0.01 • Bolt bending predominant limit 5.88 1 15 88.20 17.58 5.88 0.33 - 14.70 10 24.70 - R6 6.88 0.95 21 137.26 46.92 6.88 0.15 - 22.88 10 32.88 - R7 state 9.29 0.95 15 132.38 46.92 9.30 0.20 2315 22.08 10 32.08 0.01 R8 6.438 0.95 15 91.74 46.92 6.44 0.14 1289 15.29 10 25.29 0.02 R9 R10 9.44 0.95 15 134.52 46.92 9.44 0.20 4649 22.42 10 32.42 0.01 9.285 0.95 15 132.31 46.92 9.29 0.20 3074 22.05 10 32.05 0.01 R11 • Shims not loaded enough to 9.041 0.95 15 128.83 46.92 9.04 0.19 3048 21.47 10 31.47 0.01 R12 9.31 0.95 15 132.67 46.92 9.31 0.20 2315 22.11 10 32.11 0.01 R13 contribute 8.69 0.95 15 123.83 46.92 8.69 0.19 2315 20.64 10 30.64 0.01 R14 BOLT TENSION BOLT SHEAR BOLT BENDING T bn T uplift T uplift /T bn T n F act F act /T n M bu M bn M bu /M bn Test kip kip - kip kip - kip-in kip-in - Name 39.92 15.87 0.40 47.90 5.33 0.11 - 2.49 R1 R2 39.92 24.81 0.62 47.90 8.34 0.17 25.02 2.49 10.03 39.92 15.37 0.38 47.90 4.39 0.09 - 2.49 - R3 39.92 16.56 0.41 47.90 5.57 0.12 - 2.49 - R4 39.92 18.47 0.46 47.90 8.69 0.18 26.07 2.49 10.45 R5 39.92 14.70 0.37 47.90 5.88 0.12 - 2.49 - R6 R7 63.83 22.88 0.36 76.60 6.88 0.09 - 5.98 - 63.83 22.08 0.35 76.60 9.30 0.12 27.89 5.98 4.66 R8 R9 63.83 15.29 0.24 76.60 6.44 0.08 19.31 5.98 3.23 63.83 22.42 0.35 76.60 9.44 0.12 28.32 5.98 4.73 R10 63.83 22.05 0.35 76.60 9.29 0.12 27.86 5.98 4.65 R11 63.83 21.47 0.34 76.60 9.04 0.12 27.12 5.98 4.53 R12 63.83 22.11 0.35 76.60 9.31 0.12 9.31 5.98 1.56 R13 R14 63.83 20.64 0.32 76.60 8.69 0.11 52.14 5.98 8.71

  16. LIMIT STATES / CANOPY BEAMS • Base plate yielding a CANOPY BEAMS - MEASURED STRENGTH RESULTS BASE PLATE YIELDING SHIM COMPRESSION contributing factor for efficiently P max R f h M u P n P u P u /P n P n P uB P uA P uB + P nA (P uB + P nA )/P n Test kip - in kip-in kip kip - kip kip kip kip - Name designed specimens 4.887 0.8 57 222.85 15.89 4.89 0.31 0 37.14 0 37.14 - C1 C2 5.807 0.8 51 236.93 15.89 5.81 0.37 2315 39.49 0 39.49 0.02 4.539 0.8 57 206.98 15.89 4.54 0.29 0 34.50 0 34.50 - C4 4.858 0.8 51 198.21 15.89 4.86 0.31 2315 33.03 0 33.03 0.01 C5 • Bolt bending predominant limit 6.213 0.95 57 336.43 42.42 6.21 0.15 0 56.07 0 56.07 - C7 7.04 0.95 51 341.09 42.42 7.04 0.17 2315 56.85 0 56.85 0.02 C8 state (though much less so for C9 6.752 0.95 51 327.13 42.42 6.75 0.16 1289 54.52 0 54.52 0.04 7.236 0.95 51 350.58 42.42 7.24 0.17 4649 58.43 0 58.43 0.01 C10 beams) 6.962 0.95 51 337.31 42.42 6.96 0.16 3074 56.22 0 56.22 0.02 C11 7.176 0.95 51 347.68 42.42 7.18 0.17 3048 57.95 0 57.95 0.02 C12 C13 7.032 0.95 51 340.70 42.42 7.03 0.17 2315 56.78 0 56.78 0.02 6.804 0.95 51 329.65 42.42 6.80 0.16 2315 54.94 0 54.94 0.02 • Shims not loaded enough to C15 contribute BOLT TENSION BOLT SHEAR BOLT BENDING T bn T uplift T uplift /T bn T n F act F act /T n M bu M bn M bu /M bn Test kip kip - kip kip - kip-in kip-in - Name 89.81 37.14 0.41 107.78 4.89 0.05 - 8.42 - C1 89.81 39.49 0.44 107.78 5.81 0.05 17.42 8.42 2.07 C2 89.81 34.50 0.38 107.78 4.54 0.04 - 8.42 - C4 89.81 33.03 0.37 107.78 4.86 0.05 14.57 8.42 1.73 C5 C7 113.47 56.07 0.49 136.17 6.21 0.05 - 14.18 - 113.47 56.85 0.50 136.17 7.04 0.05 21.12 14.18 1.49 C8 113.47 54.52 0.48 136.17 6.75 0.05 20.26 14.18 1.43 C9 113.47 58.43 0.51 136.17 7.24 0.05 21.71 14.18 1.53 C10 113.47 56.22 0.50 136.17 6.96 0.05 20.89 14.18 1.47 C11 C12 113.47 57.95 0.51 136.17 7.18 0.05 21.53 14.18 1.52 113.47 56.78 0.50 136.17 7.03 0.05 7.03 14.18 0.50 C13 113.47 54.94 0.48 136.17 6.80 0.05 40.82 14.18 2.88 C15

  17. PROJECT-LEVEL RESULTS STRUCTURAL FEM THERMAL TESTING VALIDATION DESIGN RECOMMENDATIONS MODELING Limit states to account for increased eccentricities on connection, shim compression, Shelf Angles bolt bending. 77-92% No detriment Limit states to account for increased eccentricities on connection, shim compression, Roof Posts bolt bending. 1-30% No detriment Limit states to account for increased eccentricities on connection, shim compression, Canopy Beams bolt bending. 1-30% No detriment Bolted Connections Reduction of 20% recommended for FRP fills >=1”(comparable to steel fill spec) With FRP Fills Up to 20% strength & 84% stiffness loss Flatwise Comp. New test standard developed; reduction of 60% recommended for FRP to account for creep. Development of creep factor underway. Creep of FRP Creep happens Tech Note in development for guidelines on specifying and designing with stainless Ancillary Bolts steel bolts. + Materials

  18. THANK YOU QUESTIONS?

Recommend


More recommend