Elliptic Operators with Unbounded Coefficients Federica Gregorio Universitá degli Studi di Salerno 8th June 2018 joint work with S.E. Boutiah, A. Rhandi, C. Tacelli
Motivation Consider the Stochastic Differential Equation � dX ( t , x ) = F ( X ( t , x )) dt + Q ( X ( t , x )) dB ( t ) , t > 0 , (SDE) X ( 0 ) = x ∈ R N , B ( t ) is a standard Brownian motion and Q ( x ) ∈ L ( R N ) . ◮ Probabilistic model of the physical process of diffusion ◮ Model in mathematical finance ◮ Model in biology
Motivation Consider the Stochastic Differential Equation � dX ( t , x ) = F ( X ( t , x )) dt + Q ( X ( t , x )) dB ( t ) , t > 0 , X ( 0 ) = x ∈ R N , ϕ ∈ C b ( R N ) u ( t , x ) := E ( ϕ ( X ( t , x )) , Then ⇒ u solves Kolomogorov/Fokker-Planck equation N ∂ u � ∂ t ( t , x ) = a ij ( x ) D ij u ( t , x ) + F ( x ) · ∇ u ( t , x ) , t > 0 , (FP) i , j = 1 x ∈ R N , u ( 0 , x ) = ϕ ( x ) , 2 Q ( x ) Q ( x ) ∗ can be unbounded. ( a ij ( x )) := 1
Examples ◮ The Black-Scholes equation: ∂ t − σ 2 2 x 2 ∂ 2 v ∂ v ∂ x 2 − rx ∂ v ∂ x + rv = 0 , 0 < t ≤ T , (BS) v ( 0 , x ) = ( x − K ) + , x > 0 . ◮ v ( t , x ) = u ( T − t , x ) is the value of european type option on the asset price x at time t ; ◮ σ is the stock volatility; ◮ r is the risk-free rate; ◮ 0 < x is the underlying asset; ◮ K is the prescribed price.
Set y = log x . Then, � σ 2 � 2 e − ( α + 1 ) 2 v ( t , x ) = x − α − 1 σ 2 t w 2 t , log x , 8 where α = 2 r σ 2 and w solves the heat equation ∂ t = ∂ 2 w ∂ w t > 0 , y ∈ R , ∂ y 2 α − 1 y ( e y − K ) + w ( 0 , y ) = e y ∈ R . 2
Examples ◮ Ornstein-Uhlenbeck operator: � dX ( t , x ) = MX ( t , x ) dt + dB ( t ) , t > 0 , (OU) X ( 0 , x ) = x ∈ R N , � t 0 e sM e sM ∗ ds . Then M = ( m ij ) ∈ L ( R N ) . Set M t := u ( t , x ) : = E ( f ( X ( t , x ))) � 2 | M − 1 / 2 = ( 2 π ) − N 2 ( det M t ) − 1 R N e − 1 ( e tM x − y ) | 2 f ( y ) dy 2 t solves the Ornstein-Ulhenbeck equation ∂ u ∂ t ( t , x ) = 1 2 ∆ u ( t , x ) + Mx · ∇ u ( t , x ) , t > 0 , (OU) x ∈ R N . u ( 0 , x ) = f ( x )
Semigroups in short Let X be a Banach space. A family ( T ( t )) t ≥ 0 of bounded operators on X is called a strongly continuous or C 0 -semigroup if ◮ T ( 0 ) = I and T ( t + s ) = T ( t ) T ( s ) for all t , s ≥ 0; ◮ t �→ T ( t ) x ∈ X is continuous for every x ∈ X .
Semigroups in short The generator of a strongly continuous semigroup A is defined as D ( A ) := { x ∈ X : t �→ T ( t ) x is differentiable on [ 0 , ∞ ) } Ax := d 1 dt T ( t ) x | t = 0 = lim t ( T ( t ) x − x ) . t ↓ 0 T ( t ) � e tA
Semigroup approach to initial-boundary value problems Given X Banach space, A : D ( A ) ⊂ X → X with boundary conditions in D ( A ) � ∂ u ∂ t ( t ) = Au ( t ) ( ACP 1 ) u ( 0 ) = u 0 ◮ ( A , D ( A )) generates a C 0 -semigroup ( T ( t )) t ≥ 0 on X ⇔ ( ACP 1 ) well posed with solution u ( t ) = T ( t ) u 0 . ◮ Study qualitative properties: positivity, stability, regularity, ...
The resolvent The Resolvent Operator is the operator R ( λ, A ) := ( λ − A ) − 1 , λ ∈ ρ ( A ) := { λ ∈ C : λ − A → X is bijective } The semigroup is related to the Resolvent Operator T ( t ) is a C 0 -semigroup, � T ( t ) � ≤ e ω t then λ ∈ ρ ( A ) for Re λ > ω � ∞ 1 e − λ s T ( s ) f ds , R ( λ, A ) f = � R ( λ, A ) � ≤ Re λ − ω . 0
Generation Theorems ◮ Hille, Yosida, (1948). Let ( A , D ( A )) closed, densely defined and λ ∈ ρ ( A ) for every λ > ω 1 ⇒ A generates � T ( t ) � ≤ e ω t � R ( λ, A ) � ≤ λ − ω = ◮ Lumer, Phillips, (1961). Rg ( λ − A ) = X , � ( λ − A ) f � ≥ λ � f � , for all λ > 0 = ⇒ A generates � T ( t ) � ≤ 1
Some trivial example Let ω ∈ R consider the operator A : R → R , Ax = ω x d dt x ( t ) = Ax ( t ) = ω x ( t ) (1) x ( 0 ) = x 0 R ( λ, A ) = ( λ − A ) − 1 solves the equation λ x − ω x = y ⇐ y ⇒ x = λ − ω y R ( λ, A ) y = λ − ω and ρ ( A ) = C \ { ω } A closed, dense H. Y. Theorem A generates � T ( t ) � ≤ e ω t λ ∈ ρ ( A ) if λ > ω = ⇒ 1 � R ( λ, A ) � = λ − ω For t > 0, T ( t ) : R → R Fixing x 0 , T ( t ) x 0 = x ( t ) is a function in t and solves (1)
Some trivial example T ( t ) x = e ω t x Semigroup laws i ) T ( t + s ) x = e ω ( t + s ) x = e ω t e ω s x = T ( t ) T ( s ) x ii ) T ( 0 ) x = e µ 0 x = x iii ) lim t → 0 T ( t ) x = x Generator e ω t x − x T ( t ) x − x Ax = lim = lim = ω x t t t ↓ 0 t ↓ 0 Resolvent � ∞ � ∞ y e − λ s T ( s ) yds = e − λ s e ω s yds R ( λ, A ) y = λ − ω = 0 0
Kernel Representation If the coefficients of the differential operator have suitable regularity, the semigroup has a kernel representation. � T ( t ) f ( x ) = R N k ( t , x , y ) f ( y ) dy . Consider the heat equation ∂ t u ( t , x ) = ∆ u ( t , x ) , u ( 0 , x ) = f ( x ) � 1 e − | x − y | 2 u ( t , x ) = T ( t ) f ( x ) = f ( y ) dy 4 t ( 4 π t ) N / 2 ( 4 π t ) N / 2 e − | x − y | 2 1 In this case k ( t , x , y ) = 4 t ◮ The behavior of the semigroup depends on the behavior of the kernel ◮ The kernel is related to the eigenvalues and the ground state of the problem
Elliptic operators with unbounded coefficients We consider elliptic operators with unbounded coefficients of the form N N � � A u ( x ) = a ij ( x ) D ij u ( x ) + b i ( x ) D i u ( x ) + V ( x ) u ( x ) . i , j = 1 i = 1 The realisation A of A in C b ( R N ) with maximal domain � W 2 , p D max ( A ) = { u ∈ C b ( R N ) ∩ loc ( R N ) : A u ∈ C b ( R N ) } 1 ≤ p < ∞ Au = A u .
� ∂ t u ( t , x ) = Au ( t , x ) x ∈ R N t > 0 , (2) x ∈ R N , u ( 0 , x ) = f ( x ) with f ∈ C b ( R N ) . To have solution we assume that for some α ∈ ( 0 , 1 ) , (1) a ij , b i , V ∈ C α loc ( R N ) , ∀ i , j = 1 , ..., N ; (2) a ij = a ji and � a ij ( x ) ξ i ξ j ≥ k ( x ) | ξ | 2 � a ( x ) ξ, ξ � = i , j x , ξ ∈ R N , k ( x ) > 0; (3) ∃ c 0 ∈ R s.t. x ∈ R N . V ( x ) ≤ c 0 ,
Consider the problem on bounded domains ∂ t u R ( t , x ) = Au R ( t , x ) t > 0 , x ∈ B R u R ( t , x ) = 0 t > 0 , x ∈ ∂ B R (3) u R ( 0 , x ) = f ( x ) x ∈ B R , with f ∈ C b ( R N ) . Then A is uniformly elliptic on compacts of R N and (3) admits unique classical solution u R ( t , x ) = T R ( t ) f ( x ) , t ≥ 0 , x ∈ B R with T R ( t ) analytic semigroup in C ( B R ) . The infinitesimal generator of ( T R ( t )) is ( A , D R ( A )) , � W 2 , p ( B R ) , : Au ∈ C ( B R ) } . D R ( A ) = { u ∈ C 0 ( B R ) ∩ 1 < p < ∞
Theorem 1 (i) ( T R ( t )) has the integral representation � T R ( t ) f ( x ) = p R ( t , x , y ) f ( y ) dy , f ∈ C ( B R ) , t > 0 , x ∈ B R B R with strictly positive kernel p R ∈ C (( 0 , + ∞ ) × B R × B R ) . (ii) T R ( t ) ∈ L ( L p ( B R )) per ogni t ≥ 0 e per ogni 1 < p < + ∞ ; (iii) T R ( t ) is contractive in C ( B R ) ; (iv) for all fixed y ∈ B R , p R ( · , · , y ) ∈ C 1 + α 2 , 2 + α ([ s , t 0 ] × B R ) for all 0 < s < t 0 and ∂ t p R ( t , x , y ) = Ap R ( t , x , y ) , ∀ ( t , x ) ∈ ( 0 , + ∞ ) × B R .
f ∈ C ( B R ) + ( iv ) , gives u R ∈ C 1 + α 2 , 2 + α ([ s , t 0 ] × B R ) . Proposition 1 Let f ∈ C b ( R N ) and t ≥ 0 ; then it exists ∀ x ∈ R N T ( t ) f ( x ) = R → + ∞ T R ( t ) f ( x ) , lim (4) and ( T ( t )) is a positive semigroup in C b ( R N ) .
Schauder interior estimates � u R � C 1 + α/ 2 , 2 + α ([ ε, T ] × B R − 1 ) ≤ C � u R � L ∞ (( 0 , T ) × B R ) ≤ Ce λ 0 T � f � ∞ Theorem 2 Let f ∈ C b ( R N ) , then the function u ( t , x ) = T ( t ) f ( x ) 1 + α 2 , 2 + α (( 0 , + ∞ ) × R N ) and it solves belongs to C loc � t > 0 , x ∈ R N , u t ( t , x ) = Au ( t , x ) x ∈ R N . u ( 0 , x ) = f ( x )
The operator For c > 0, b ∈ R , α > 2 and β > α − 2 we consider on L p ( R N ) A := ( 1 + | x | α )∆ + b | x | α − 2 x · ∇ − c | x | β . (5) Aim. ◮ Solvability of λ u − Au = f ◮ Properties of the maximal domains ◮ Generation of positive analytic semigroup
Related results ◮ b = c = 0 : Unbounded Diffusion : A = ( 1 + | x | α )∆ N [ G. Metafune, C. Spina,’10 ] α > 2 , p > N − 2 Schrödinger-Type Operator: A = ( 1 + | x | α )∆ − c | x | β ◮ b = 0 : [ L. Lorenzi, A. Rhandi ,’15] 0 ≤ α ≤ 2 , β ≥ 0 [ A. Canale, A. Rhandi, C.Tacelli ,’16] α > 2 , β > α − 2 ◮ c = 0 : Unbounded Diffusion & Drift : A = ( 1 + | x | α )∆ + b | x | α − 2 x · ∇ [ S. Fornaro, L. Lorenzi ’07 ]: 0 ≤ α ≤ 2. N [ Metafune, Spina, Tacelli,’14 ] α > 2 , b > 2 − N → p > N − 2 + b A = | x | α ∆ + b | x | α − 2 x · ∇ x − c | x | α − 2 Complete : ◮ [G. Metafune, N. Okazawa, M. Sobajima, C. Spina,’16] N / p ∈ ( s 1 + min { 0 , 2 − α } , s 2 + max { 0 , 2 − α } ) , c + s ( N − 2 + b − s ) = 0
Recommend
More recommend