Electron Holography Axel Lubk
Converting phase shifts to contrasts: Fresnel imaging - area of increased area of reduced intensity intensity βππ β β β +ππ area of reduced area of increased intensity intensity 2
Fresnel imaging: Pros & Cons Pro: Con: ο§ simple ο§ (partially) non-linear contrast ο§ fast ο§ defocus β unsharp images ο§ sensitivity adjustable ο§ quantification difficult (but possible) ο§ sensitiv to dynamical scattering Can be overcome by Holography! (now) Recommended reading: 1. VΓΆlkl , Edgar, Allard, Lawrence F., Joy, David C. (Eds.) , Introduction to Electron Holography, Springer (1999).
1. Fundamentals of electron scattering a. Axial scattering b. Magnetic and electric Ehrenberg β Siday β Aharonov β Bohm effect 2. Fundamentals of Electron Holography and Tomography a. Holographic Principle (interference, reconstruction) b. Holographic Setups (inline, off-axis) and instrumental requirements c. Separation of electrostatic and magnetic contributions d. Tomographic reconstruction of 3D electric potential and magnetic induction vector field from tilt series of projections
How do fields act on electrons waves? β β β β β β β β β β β β β β β β β β β β β β t β β β β β β β β β β β πΎ πΎ πΎ = β ππ’ βπΆ π πΎ = β ππ’ πΉ π deflectio semiclassics πΆ π πΉ π ππ€ 0 2 ππ€ 0 n angle initial πΎ = 1 π πΌπ velocity π = ππ’ π = ππ’ phase πΈ β π΅ π¨ βπ€ 0 shift π = ππ€ 0 = βπ electrostatic magnetic vector potential potential momentum wave number
ΖΈ How do fields act on electrons waves? * kinetic momentum π 2 ΰ· reduced Klein-Gordon equation operator πΉΞ¨ = 2π β ππ Ξ¨ (high-energy approximation) π = βπβπΌ + ππ© ΰ· Ξ¨ = π ππ π¨ π¨ π 2 β 2πππ π paraxial approximation β2π π¨ β ΖΈ π π¨ π = π β₯ 2 β’ π π¨ π β π β ΖΈ π β₯ + ππ β π small-angle scattering β π΅ π¨ π 2β 2 π π¨ β’ no backscattering ο 2D time-dependent SchrΓΆdinger equation π π¨ π β π ππ β π axial approximation β π΅ π¨ π (wavelength << object details) β’ very small angle scattering βπ€ π β π π π = π ππ π 0 β π = ΰΆ± β π΅ π¨ ππ¨ object * It is a good exercise to do derivation by yourself.
Phase shift by electric potential s 1 s 2 π πππ‘ = π π = π ΰΆ± ΰΆ± Vππ¨ βπ€ π‘ 2 βπ‘ 1 object refractive index
Detectable phase shift * source β 2π π Τ¦ Ξπ = π ΰΆ± π ππ‘ ΰΆ» π΅(Τ¦ π )πΤ¦ π‘ β V 1 V 2 π‘ 2 βπ‘ 1 π‘ 2 +π‘ 1 electric magnetic s 1 s 2 2π π Ξπ = π π p,1 β π β β Ξ¦ p,2 detector phase difference οοͺ * Why can we only detect phase differences?
Detectable phase shift source π Ξπ = π ΰΆ± π ππ‘ β ΰΆ» π©ππ β V 1 V 2 π‘ 2 βπ‘ 1 π‘ 2 +π‘ 1 ο electric magnetic s 1 s 2 π Ξπ = π π p,1 β π β β Ξ¦ p,2 detector phase difference οοͺ
Detectable phase shift source π Ξπ = π ΰΆ± π ππ‘ β ΰΆ» π©ππ β V 1 V 2 π‘ 2 βπ‘ 1 π‘ 2 +π‘ 1 ο electric magnetic s 1 s 2 π Ξπ = π π p,1 β π β β Ξ¦ p,2 detector For the magnetic phase shift a Lorentz force phase difference οοͺ is not required at the electron trajectories !
Ehrenberg - Siday β Aharonov - Bohm Effect Proposal: Ehrenberg & Siday 1949 Aharonov & Bohm 1958 Experiment: MΓΆllenstedt & Bayh 1962 Time Increasing Magnetic Flux
Magnetic phase shift οΉ i t Ξ¦(π¦) x οΉ f ref ο οͺ z π(π¦) = π π(π¦) β Ξ¦(π¦) Ξ¦ = β = 2π magnetic flux quantum for π
Summary: object exit wave Phase object οͺ Amplitude object a a exp[ i οͺ ]
Summary: object exit wave phase modulation οͺ (π¦, π§) : micro- /nanofields β’ electric β’ magnetic amplitude modulation π(π¦, π§) : β’ scattering into large angles β’ interference effects β’ inelastic scattering
1. Fundamentals of electron scattering a. Axial scattering b. Magnetic and electric Ehrenberg β Siday β Aharonov β Bohm effect 2. Fundamentals of Electron Holography and Tomography a. Holographic Principle (interference, reconstruction) b. Holographic Setups (inline, off-axis) and instrumental requirements c. Separation of electrostatic and magnetic contributions d. Tomographic reconstruction of 3D electric potential and magnetic induction vector field from tilt series of projections
Dennis Gabor Easter 1947, on the tennis court: ... and all of sudden it came to me, without any effort on my side. Interference and diffraction are mutually inverse 1902-1979 Nobel Prize 1971 Electron Holography measures phases
Dennis Gabor Holography Object wave hologram Image wave interference diffraction
Common Forms of Electron Holography focal series inline off-axis transport of intensity J.M. Cowley, 20 forms of holography , Ultramicroscopy 41 (1992), 335-348
Holography - Dennis Gabor Β΄ s idea object object exit wave propagation prop wave
Holography - Dennis Gabor Β΄ s idea object object exit wave propagation prop wave h o l o g r a m
Holography - reconstruction of wave object PROBLEM ο INVERSE object exit wave back-propagation prop wave h o l o g r a m
Holography: basic scheme π π
Holography: recording hologram π βππ = (π + π )(π + π ) β = ππ β + π π β + ππ β + π β π π
Holography: reconstruction of wave π π π β βππ = (ππ β )π + (π π β )π + (ππ β )π + (π β π )π = π(ππ β + π π β ) + π β (ππ) + π (ππ β ) π β β -wave π -wave π π -wave π modulated in modulated in modulated in amp π; π amp/phase π amp π
Holography: reconstruction of wave π π β π β βππ = (ππ β )π + (π π β )π + (ππ β )π + (π β π )π = π (ππ β + π π β ) + π(π β π ) + π β (π π ) π π β -wave π -wave π -wave π modulated in modulated in modulated in amp π; π amp π amp/phase π
Plane reference wave r π π β π β βππ = (ππ β )π + (π π β )π + (ππ β )π + (π β π )π = π (ππ β + π π β ) + π(π β π ) + π β (π π ) π π π β π -wave -wave π -wave modulated in modulated in amp π phase π
Where to take the hologram ? Object plane ? Fresnel region Fraunhofer region Fourier plane In principle : β where β is not essential, but with electrons we are β coherency- limitedβ .....
Where to take the hologram ? Inline Holography Scattering Regimes Reconstruction Schemes ο½ ο° ο¬ Illumination k 2 / Differential Defocus / Transport of Intensity Reconstruction Defocus Series Fresnel (near field) Reconstruction Fraunhofer (far field) Fraunhofer Holography Figure from Lee, Optics Express Vol. 15, Issue 26, pp. 18275-18282 (2007)
1. Fundamentals of electron scattering a. Axial scattering b. Magnetic and electric Ehrenberg β Siday β Aharonov β Bohm effect 2. Fundamentals of Electron Holography and Tomography a. Holographic Principle (interference, reconstruction) b. Holographic Setups (inline, off-axis) and instrumental requirements c. Separation of electrostatic and magnetic contributions d. Tomographic reconstruction of 3D electric potential and magnetic induction vector field from tilt series of projections
Transport of Intensity Reconstruction Paraxial Eq. οΆο ( r , ) z i ο½ ο ο ο ( r , ) z ο ο οΆ z 2 k Continuity Eq. / Transport of Intensity Eq. οΆ ο² ( r , ) z 1 ο½ ο ο ο ο j ( r , ) z ο ο ο οΆ z k density / intensity phase 1 ο¨ ο© ο½ ο ο ο ο² ο οͺ οͺ οΊ ο ( r , ) z ( r , ) z ο² οΊ ο 2 arg ο ο ο ο k experimental data from 2 slightly defocussed images ο¨ ο© ο¨ ο© ο¨ ο© οΆ ο² ο² ο« ο€ ο ο² ο ο€ ο¨ ο© z z z z z ο½ ο« ο€ 2 O z οΆ ο€ z 2 z ο¨ ο© ο¨ ο© ο² ο« ο€ ο² ο ο€ z z , z z ο¨ ο© ο¨ ο© ο² ο« ο€ ο« ο² ο ο€ ο¨ ο© z z z z ο¨ ο© ο² ο½ ο« ο€ 2 z O z 2
Transport of Intensity Reconstruction simpliefied TIE reconstruction minimal model οΆ ο² ( r , ) z 1 ο½ ο ο ο ο ( r , ) j z ο ο ο οΆ z k 1 ο¨ ο© ο½ ο ο ο ο² ο οͺ ( r , ) z ( r , ) z ο ο ο ο k phase object ο² ο½ ( r , ) z const. ο οΆ ο² ο² r ( , ) z ο½ ο ο οͺ ο ( r , ) z ο ο οΆ z k Poisson problem (e.g., solve with periodic boundary conditions)
Recommend
More recommend