electromagnetic waves
play

ELECTROMAGNETIC WAVES and particulate materials J. Carlos - PowerPoint PPT Presentation

Aussois 2012 ELECTROMAGNETIC WAVES and particulate materials J. Carlos Santamarina Georgia Institute of Technology References: Santamarina, J.C., in collaboration with Klein, K. and Fam, M. (2001). Soils and Waves, J. Wiley and Sons,


  1. Aussois 2012 ELECTROMAGNETIC WAVES and particulate materials J. Carlos Santamarina Georgia Institute of Technology

  2. References: Santamarina, J.C., in collaboration with Klein, K. and Fam, M. (2001). Soils and Waves, J. Wiley and Sons, Chichester, UK, 488 pages. Klein, K. and Santamarina, J. C. (2003b). "Electrical Conductivity In Soils: Underlying Phenomena." Journal of Environmental & Engineering Geophysics, Vol. 8, No. 4, pp. 263-273. Klein, K. and Santamarina, J. C. (1997). "Methods for Broad-Band Dielectric Permittivity Measurements (Soil- Water Mixtures, 5 Hz to 1.3 GHz)." ASTM Geotechnical Testing Journal, Vol. 20, No. 2, pp. 168-178. Santamarina, J. C. and Fam, M. (1997b). "Dielectric Permittivity of Soils Mixed with Organic and Inorganic Fluids (0.02 GHz to 1.30 GHz)." Journal of Environmental & Engineering Geophysics, Vol. 2, No. 1, pp. 37-52. Santamarina, J. C. and Fam, M. (1995). "Changes in Dielectric Permittivity and Shear Wave Velocity During Concentration Diffusion." Canadian Geotechnical Journal, Vol. 32, No. 4, pp. 647-659. Some pdfs (these and related papers) available at http://pmrl.ce.gatech.edu under "Publications"

  3. Soils: An Electrical View

  4. Fluids - Water Mass Bulk stiffness Capillary forces Seepage rate Dipole Hydration and double layers Cl - 90 90 H + 120 60 120 60 H + 109 o 150 30 150 30 Cl - Cl - C 4+ 180 0 180 0 210 330 O 2- 210 330 240 270 300 240 270 300 Cl - L=1.25r L=10r

  5. Electrical View of Soils dry soil water wet soil pore fluid Precipitated salt mineral double layer

  6. Wet clay Laponite 1200 H 2 O 24 Na + N. Skipper (UCL)

  7. Electromagnetic Waves

  8. Maxwell’s Equations 1 E E d s s free dv free Gauss' Law of Electricity E v v surf vol H d s 0 H 0 Gauss' Law of Magnetism surf d d H E d l H d s E Faraday's Law of Induction dt dt loop surf d d E H d l J d s E d s H E Ampere-Maxwell's Law dt dt loop surf surf

  9. Electromagnetic Parameters Free Materials space Conductivity 0 ε o ε * = ε ’ - j ε ” Permittivity = ’ - j ” Permeability o

  10. Wave Equation E E E E 2 2 E in real t t 2 materials Consider solution of the form (fluctuates in y - propagates in x) E E e x e ( j t x ) y o j j 2 Then

  11. E E e x e ( j t x ) if y o dH E Faraday dt * * H j E e j t * x j E then z o y x y z

  12. Phase Velocity V ph Im( j ) Im j 2 1 m V c 3 10 8 In free space s ph o 0 o o o o c V o In non-ferromagnetic dielectric ph ' ' 0 o o

  13. Attenuation Re j Re j 2 In free space 0 0 o o ' In non-ferromagnetic material 1 o 1 tan 2 1 ' j " c 2 o o

  14. Frequency Wave Wave [Hz] length [m] 10 22 10 -14 10 21 10 -13 Gamma rays 10 20 10 -12 Electromagnetic 10 19 10 -11 10 18 10 -10 X rays Spectrum 10 17 10 -9 10 16 10 -8 Ultraviolet 10 15 10 -7 10 14 10 -6 Visible * 10 13 10 -5 Infrared 10 12 10 -4 10 11 10 -3 Microwaves 10 10 10 -2 GHz 10 9 10 -1 10 8 1 10 7 10 1 MHz 10 6 10 2 10 5 10 3 Radio waves 10 4 10 4 KHz 10 3 10 5 10 2 10 6 10 1 10 7

  15. and God said: 1 free E v H 0 d H E dt d E H E dt and there was light…!

  16. Light-surface interaction (Atlanta Airport) and blue butterflies?

  17. Reflection Fresnel’s Ellipse van Gogh - La Nuit Etoilee

  18. Scatter St. Peter - Rome

  19. Electromagnetic Material Properties

  20. Electromagnetic Parameters Conductivity ε * = ε ’ - j ε ” Permittivity = ’ - j ” Permeability

  21. Note: Losses Ohmic conduction losses ε ” ω Polarization losses ” ω Magnetization losses " tan Non-Ferromagnetic '

  22. Conductivity  charges & mobility

  23. Electrical Conductivity of the Pore Fluid 40 conductivity [S/m] 30 NaOH NaCl 20 CaCl 2 10 0 0 2 4 6 8 10 12 concentration [mol/L] [ mS / m ] 0 . 15 TDS [ mg / L ] At low concentration (P. Annan): fl

  24. Archie’s Law? n soil el

  25. Electrical Conductivity Pore fluid Surface conduction n 1 n S Wet Soil soil el g s

  26. Electrical Conductivity of Soils 1 n Archie soil fl mix [S/m] c = 0.1 mol/L 0.1 mixture conductivity, c = 10 -5 mol/L n 1 n S 0.01 soil fl s 0.001 0.4 0.5 0.6 0.7 0.8 0.9 1 porosity, n

  27. Summary el = soil g S s Controlled by (1-n) 10 0 soil [S/m] Controlled by clays el n 10 -3 S s sands 10 -3 10 -6 10 0 el [S/m] de-ionized fresh sea water water water

  28. Summary: Electrical Conductivity g λ S s el = soil Controlled by (1-n) 2 10 0 soil [S/m] Controlled by n el clays 10 -3 S s sands 10 -3 10 -6 10 0 el [S/m] de-ionized fresh sea water water water

  29. Permittivity  Polarizability

  30. Single phase Direction of Applied Field Orientational Ionic Electronic (relaxation) (resonance) (resonance) - 16 s t - 12 s =10 - 13 s t × t = 9 10 =10 (Ultraviolet) – (Microwave water) (Infrared)

  31. Polarization spectrum 0 200 150 spatial orientational 100 ionic electronic ' 50 " 0 conduction polarization losses losses 50 100 1 103 1 104 1 105 1 106 1 107 1 108 1 109 1 10101 1011 1 10121 10131 1014 1 10151 1016 1 10171 1018 1 10 2 10 4 10 6 10 8 10 10 10 12 10 14 10 16 10 18 1 10 frequency [Hz]

  32. Water-Ion Interaction 90 f = 1.3 GHz 80 70 KCl 60 ' FeCl 3 LiCl 50 40 NaCl 30 CaCl 2 20 0 1 2 3 4 5 6 ionic concentration [mol/L]

  33. Double layer effects Direction of Applied Field Bound water (relaxation) Stern layer (Infrared) (Radio frequency) Double layer (deionized) Double layer (electrolyte) Double layer - Normal particle interactions (surface conduction)

  34. Two-phase media - Spatial polarization Direction of Applied Field Maxwell relaxation (no relaxation) Wagner relaxation Semi-permeable membrane

  35. Polarizations single phase material log(size/m) mixture (interfacial polarization - relaxation) 0 macrospace polarization -3 scatter micro-space visible polarization grain range bound. -6 double layer molecular -9 orient. relax ionic -12 electronic reson. resonance -15 -3 0 3 6 9 12 15 log(frequency/Hz)

  36. Summary: Relative Permittivity water 78 ice ~3 air, gasses ~1 most organic fluids 2-6 minerals 5-10 ' ' ' 1 n n 1 S nS Linear mixture soil m w 2 ' ' ' 1 n n 1 S nS CRIM soil m w ' 2 3 3.03 9.3 146.0 76.7 Topp et al. 1980 soil v v v

  37. Summary: Single materials water 78.5 quartz 4.2 - 5 methanol 32.6 calcite 7.7 - 8.5 most minerals 6 – 10 most organic fluids 2 - 6

  38. Free Water - Consolidation Orientational Pol. 40 1.3 GHz 0.20 GHz (Table 11.9) Permittivity DeLoor 35 ' 30 ' 25 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 local volumetric water content Volumetric Water Content s

  39. Summary: Soils VOLUMETRIC WATER CONTENT 2 ' 2 . 6 1 . 6 n 7 . 9 v 2 ' 40 3 . 9 44 . 8 392 1600 v v v 2 ' 1 . 40 87 . 6 18 . 7 v v 2 3 ' 3 . 03 9 . 3 146 . 0 76 . 7 v v v 2 ' 3 . 14 23 . 8 16 . 0 v v 2 ' 3 . 3 41 . 4 16 . 0 v v

  40. Summary 90 Kaolinite Topp et al. (1980) Bentonite 80 Based on CRI - S=100% Mixed clays Selig and Mansukhani (1975) Sands and silts 70 real relative permittivity [ ] Wang (1980) 60 50 Wensink (1993) 40 30 20 10 0 0 20 40 60 80 100 volumetric water content [%]

  41. Permeability  Magnetizability

  42. Kingston Fossil Plant (12/22/2008) [Photo: U.S. Environmental Protection Agency]

  43. XRD: Mill Creek Hopper Magnetically separated fraction: hematite Fe 2 O 3 (weakly magnetic), magnetite Fe 3 O 4 and maghemite Fe 2 O 3 (both strongly magnetic).

  44. Magnetization Electron orbits orbit alignment Diamagnetism Electron spin unpaired Paramagnetism Alignment within domains move domain walls Ferromagnetism domain 1 wall domain 2

  45. Permeability iron fillings in kaolinite – f = 10 kHz 3 2.5 μ’ rel = 1 + 4 v Fe + 7 v Fe μ’ rel = 1 + 3 v Fe 2 Maxwell ' rel Wagner 1.5 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 volume fraction of iron filings

  46. Permeability iron in kaolinite – f = 10 kHz 2.2 2 1.8 1.6 ' rel (a) (b) (c) (d) (e) (f) (g) 1.4 1.2 1 10 3 10 4 10 5 10 6 10 7 10 2 frequency [Hz] 0.5 Series1 (a) 0.4 Series2 (b) Series3 (c) Series4 0.3 (d) " Series5 (e) rel (f) Series6 0.2 (g) Series7 0.1 0 10 2 10 3 10 4 10 5 10 6 10 7 frequency [Hz]

  47. Summary '/ Single materials o water, quartz, kaolinite ~0.9999 (diamagnetic) montmorillonite, illite, granite, hematite 1.00002-1.0005 (paramagnetic) nickel, iron > 300 (ferromagnetic) Predictive relations 1 3v spherical ferromagnetic inclusions Fe for v Fe <0.2 1 4v 7v 2 Kaolinite with iron filings (at 10 kHz) Fe Fe for v Fe <0.3

  48. Measurement

  49. Testing Standing Quasi-DC Wave propagation wave f res f Complex V R, C, L α Reflectivity

  50. Quasi-static

Recommend


More recommend