electromagnetic counterparts and r process
play

Electromagnetic counterparts and r-process Tsvi Piran The Hebrew - PowerPoint PPT Presentation

Electromagnetic counterparts and r-process Tsvi Piran The Hebrew University Kenta Hotokezaka, Ehud Nakar Kyoto - Nov 2016 Outline 1. The Li-Paczynski Macronova (kilonova) 2. GRBs 060614/050709 and their Macronove 3. Plutonium 4. Dwarf


  1. Electromagnetic counterparts and r-process Tsvi Piran The Hebrew University Kenta Hotokezaka, Ehud Nakar Kyoto - Nov 2016

  2. Outline 1. The Li-Paczynski Macronova (kilonova) 2. GRBs 060614/050709 and their Macronove 3. Plutonium 4. Dwarf Galaxies 5. The cocoon’ s macronova - the strongest EM counterpart? 6. Limits on magnetars from radio flares 7 . * The energy deposition rate 8. Conclusions

  3. 1. Macronova* (Li & Paczynski 1997) • Radioactive decay of the neutron rich matter. Bohdan Paczynski • E radioactive ≈ 0.001 Mc 2 ≈ 10 50 erg • A weak short Supernova like event. *Also called Kilonova

  4. 1. Macronova* (Li & Paczynski 1997) • Radioactive decay of the neutron rich matter. Bohdan Paczynski • E radioactive ≈ 0.001 Mc 2 ≈ 10 50 erg • A weak short Supernova like event. *Also called Kilonova Hektanova

  5. 1. Macronova* (Li & Paczynski 1997) • Radioactive decay of the neutron rich matter. Bohdan Paczynski • E radioactive ≈ 0.001 Mc 2 ≈ 10 50 erg • A weak short Supernova like event. *Also called Kilonova Hektanova Decanova

  6. Radioactive Decay* Korobkin + 13; Rosswog, Korobkin + 13 • After a second dE/dt ∝ t -1.3 (Freiburghaus+ 1999; Korobkin + 2013)

  7. Photons escape from this region The light curve depends on 1. mass 2. velocity 3. opacity Increase as we see a large fraction of the matter. luminosity Decrease due to radioactive decay time

  8. Photons escape from this region The light curve depends on 1. mass 2. velocity 3. opacity Increase as we see a large fraction of the matter. luminosity Decrease due to radioactive decay time

  9. S. Rosswog, … Following Davies + 1994

  10. Lanthanides dominate the opacity (Kassen & Barnes 13, Tanaka & Hotokezaka 13) ) κ = 10cm 2 /gm t max ∝ κ 1/2 => l o n g e r L max ∝ κ -0.65 => weaker T ∝ κ -0.4 => redder

  11. Lanthanides dominate the opacity (Kassen & Barnes 13, Tanaka & Hotokezaka 13) ) κ = 10cm 2 /gm t max ∝ κ 1/2 => l o n g e r L max ∝ κ -0.65 => weaker T ∝ κ -0.4 => redder

  12. Lanthanides dominate the opacity (Kassen & Barnes 13, Tanaka & Hotokezaka 13) ) κ = 10cm 2 /gm t max ∝ κ 1/2 => l o n g e r L max ∝ κ -0.65 => weaker T ∝ κ -0.4 => redder 1 days 10

  13. Lanthanides dominate the opacity (Kassen & Barnes 13, Tanaka & Hotokezaka 13) ) κ = 10cm 2 /gm 10 41 t max ∝ κ 1/2 => l o n g e r L max ∝ κ -0.65 => weaker T ∝ κ -0.4 => redder 10 40 1 days 10

  14. Lanthanides dominate the opacity (Kassen & Barnes 13, Tanaka & Hotokezaka 13) ) κ = 10cm 2 /gm 10 41 t max ∝ κ 1/2 => l o n g e r L max ∝ κ -0.65 => weaker T ∝ κ -0.4 => redder 10 40 1 days 10 uv or optical -> IR

  15. GRB130603B @ 9 days AB (6.6 days at the source frame) V nIR HST image (Tanvir + 13)

  16. Swift Macronova? Tanvir + 13, Berger + 13

  17. If correct Confirmaiton of the GRB neutron star merger model (Eichler, Livio, TP & Schramm 1989). Confirmation of the Li-Paczynski Macronova (Li-Paczynski 1997). Confirmation that compact binary mergers are the source of heavy (A>130) r-process material: Gold, Silver, Platinum, Plotonium, Uranium etc…(Lattimer & Schramm, 75).

  18. The rate of Short GRBs Macronova and r- process About 1/3 of Swift short (<2sec) GRBs are Collapsars The rate of non-Collapsar short GRBs (sGRbs) is 4.1 +2.3-1.9 Gpc -3 yr -1 (depending on the assumed minimal luminosity). A LIGO detection rate of 3-100 per year (0.1-3 coinciding with a sGRB)* A typical time delay of ~ 3 Gyr after SFR=> an initial separation of ~ 2 x 10 11 cm But selection effects? Maybe consistent with p( τ ) ~ 1/ τ With beaming of ~ 30 and mass ejection of 0.02 M sun - compatible with R-process nucleosynthesis for A>110 elements.

  19. GRB 060614 Need M ≃ 0.1M ⨀ => BH-NS ? Yang et al., 2015

  20. GRB 050709 Need M ≃ 0.05M ⨀ !! !! '"# '"# !"# !"#$ %&'()*+ ,-.+/ '"! '"! !"& !"& => BH-NS ? !" !" !"% !"% !"$ !"$ !"# !"# !"! !"! !# !# !"#$ %$#&'()*" # # ( ( ) ) '! '! *+,-.,/01 2'! !" 345 !$ !$ !% !% :')#; !& !& < = > !' !' ) ) ! ! " " $ $ )( )( !( !( "( "( #( #( *+,- .+/0- 123.4 5678.9 Jin et al., 2016

  21. Are Macronova Frequent? There are 3 (6) possible (nearby) historical candidates with a good enough data In 3/3 (3/ 6) there are possible Macronovae

  22. R-Process 10000 LIGO/Virgo limit R-element mass (A>90) Macronova candidate 1000 R(z=0) [Myr -1 ] Galactic NS 2 100 10 Short GRBs 1 Advanced (5yr) 0.1 0.0001 0.001 0.01 0.1 1 M ej [M sun ]

  23. R-Process 10000 LIGO/Virgo limit R-element mass (A>90) Macronova candidate 1000 R(z=0) [Myr -1 ] Galactic NS 2 100 10 Short GRBs 1 Advanced (5yr) 0.1 0.0001 0.001 0.01 0.1 1 M ej [M sun ] *

  24. Wanderman Piran 15 10000 LIGO/Virgo limit R-element mass (A>90) Macronova candidate 1000 R(z=0) [Myr -1 ] Galactic NS 2 100 10 Short GRBs 1 Advanced (5yr) 0.1 0.0001 0.001 0.01 0.1 1 M ej [M sun ] *

  25. Wanderman Piran 15 10000 LIGO/Virgo limit R-element mass (A>90) Macronova candidate 1000 R(z=0) [Myr -1 ] Galactic NS 2 100 10 Short GRBs 1 Advanced (5yr) 0.1 0.0001 0.001 0.01 0.1 1 M ej [M sun ] *

  26. 10000 LIGO/Virgo limit R-element mass (A>90) Macronova candidate 1000 R(z=0) [Myr -1 ] Galactic NS 2 100 10 Short GRBs 1 Advanced (5yr) 0.1 0.0001 0.001 0.01 0.1 1 M ej [M sun ] Can we break the yield - rate degeneracy?

  27. 10000 LIGO/Virgo limit R-element mass (A>90) Macronova candidate 1000 R(z=0) [Myr -1 ] Galactic NS 2 100 10 Short GRBs 1 Advanced (5yr) 0.1 0.0001 0.001 0.01 0.1 1 M ej [M sun ] Can we break the yield - rate degeneracy? *

  28. Radioactive Elements Rare Events t Frequent events t

  29. High 244 Pu at the early solar system => 244 Pu Radioactive decay time ~ 100 Myear A nearby event near solar system Mixing time < 150 Myr Large fluctuations possible => Event rate is low Lack of Cu => 10 Myr < Mixing length

  30. Tissot + 16 t

  31. 244 Pu (half life 81Myr) The early solar system Wallner + 14

  32. Rare and “massive” events

  33. r-process material in Dwarf Galaxies (Beniamini+ 16a,b)

  34. The Secret Signatures of GRB cocoons Nakar & TP ApJ 16 in press From Mizuta

  35. The idea in a single picture

  36. The Jet drills a hole in the star Zhang, Woosley & MacFadyen 2004

  37. Jet breakout (Bromberg Nakar, TP, Sari 11 ApJ 2011) The engine must be active until the jet’ s head breaks out!*

  38. A prediction of the Collapsar model Observed duration T 90 = T e -T B Engine Break out time time

  39. A prediction of the Collapsar model dN(T 90 )/dt Observed duration T 90 = T e -T B Engine Break out T 90 time time

  40. A prediction of the Collapsar model dN(T 90 )/dt Observed duration T 90 = T e -T B Engine Break out T 90 T B time time

  41. ? Short Long T 90

  42. ? dlog(N)/dT 90 Short Long T 90

  43. A second look (Bromberg Nakar, TP & Sari, 2011) d N / d T 9 0 T 90

  44. A second look (Bromberg Nakar, TP & Sari, 2011) d N / d T 9 0 T 90 A direct observational proof of the Collapsar model.

  45. Short (Non-Collapsars) Collapsars

  46. Short (Non-Collapsars) Collapsars

  47. Swift Short (Non- Collapsars) GRBs Collapsars

  48. Swift Short (Non- Collapsars) GRBs Collapsars

  49. Swift Short (Non- Collapsars) GRBs Collapsars Short Swift GRBs with T 90 >0.7sec are not “short”!

  50. E GRB ≈ E ejecta ≈ E c Macronova + Radio flare

  51. Cocoon’ s structure

  52. 3D simulation 4Msun, R*=4x10 10 cm. L j =10 51 erg/s, θ =8 ο Using Pluto with high resolution Δ R=10 7 cm. Credit: Ore Gottlieb

  53. 3D simulation 4Msun, R*=4x10 10 cm. L j =10 51 erg/s, θ =8 ο Using Pluto with high resolution Δ R=10 7 cm. Credit: Ore Gottlieb

  54. 2D simulation 110sec after breakout Jet Wide angle Γ≈ 10 material Star 4Msun, R*=4x10 10 cm. L j =10 51 erg/s, θ =8 ο Using Pluto with high resolution Δ R=10 7 cm. Credit: Ore Gottlieb

  55. The cocoons Harrison, Goetlieb and Nakar in prep, 2016

  56. Emission component Newtonian Cocoon - cooling (photospheric) emission Newtonian cocoon - macronova Relativistic Jet cocoon - cooling (photospheric) emission Relativistic Jet cocoon - afterglow

  57. The cocoons Light “relativistic” Jet cocoon Jet Heavy “Newtonian” stellar cocoon Harrison, Goetlieb & Nakar in prep, 2016

  58. Cocoon Dynamics R θ Stellar Envelope R L=E c c/R

  59. Full Partial No mixing mixing mixing η =1 η 3 η 2 η 1

  60. Partial Mixing Light “relativistic” Jet cocoon Heavy “Newtonian” Stellar cocoon Harrison, Goetlieb and Nakar in prep, 2016

  61. 2D simulation 110sec after breakout Jet Wide angle Γ≈ 10 material Star . 4M O , R*=4x10 10 cm. L j =10 51 erg/s, θ =8 ο Using Pluto with high resolution Δ R=10 7 cm. Credit: Ore Gottlieb

  62. Energy per Log interval Newtonian Relativistic Γβ

Recommend


More recommend