electrical impedance tomography for deformable media
play

Electrical Impedance Tomography for Deformable Media Camille - PowerPoint PPT Presentation

Electrical Impedance Tomography for Deformable Media Camille Gmez-Laberge, M.A.Sc. Andy Adler, Ph.D. Dept. of Systems and Computer Engineering Carleton University, Ottawa, Canada ICEBI 2007 Outline Lung ventilation EIT Image


  1. Electrical Impedance Tomography for Deformable Media Camille Gómez-Laberge, M.A.Sc. Andy Adler, Ph.D. Dept. of Systems and Computer Engineering Carleton University, Ottawa, Canada ICEBI 2007

  2. Outline • Lung ventilation EIT • Image variability from boundary deformation • Electrode displacement regularization • Imaging of deformable media • 3D EIT Jacobian calculations EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  3. Lung ventilation EIT applied current v v v internal boundary conductivity voltage EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  4. Lung ventilation EIT inverse solution X � � ��� � = 1.discretize 2.linearize 3.regularize boundary internal voltage conductivity EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  5. Boundary deformation • Lung ventilation imaging is prone to • throacic deformation • posture change • Thorax expansion per manoeuvre • tidal breathing: circumference increases 1% • total lung capacity: circumference increases 5% • These deformations cause significant artefacts EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  6. Boundary deformation A R correct incorrect EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  7. Electrode displacement regularization image boundary internal voltage conductivity electrode � � displacement EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  8. Electrode displacement regularization EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  9. Electrode displacement regularization • Building R : a priori claims • conductivity distribution is smooth • adjacent electrode displacements are correlated EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  10. Electrode displacement regularization 4 2 electrodes -1 elements 4 -1 3 -1 -1 -1 5 -1 -1 2 -1 -1 8 -1 electrodes elements EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  11. Electrode displacement regularization 0 ��� 0 EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  12. Electrode displacement Jacobian • Building J: sensitivity to deformation • conductivity change will affect boundary voltage • displacements will affect boundary voltage EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  13. Electrode displacement Jacobian voltage voltage elements electrodes EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  14. Electrode displacement Jacobian ��� Calculating the Jacobian becomes time consuming for large FEM > 30,000 elements EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  15. Imaging deformable media true standard proposed simulation 1% phantom 5% EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  16. Imaging deformable media Human TLC-RC breathing: 1.2 sec. increments Human “paradoxical” breathing: 1.2 sec. increments EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  17. 3D EIT Jacobian • Jacobian calculation time increases exponentially for large 3-D FEM Elements Model pair inverse forward A 7,680 1,536 B 15,360 3,072 EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  18. 3D EIT Jacobian • Save time by calculating J directly from the FEM system matrix EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  19. 3D EIT Jacobian • Derived J using rank-one asymmetric matrix perturbations EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

  20. Thank you: • ICEBI Graz Committee • My supervisor: Dr. Andy Adler • Bio-impedance scientific community EIT for deformable media ICEBI 2007 cgomez@sce.carleton.ca

Recommend


More recommend