electric dipole moments of light nuclei
play

Electric dipole moments of light nuclei Emanuele Mereghetti - PowerPoint PPT Presentation

Electric dipole moments of light nuclei Emanuele Mereghetti November 4th, 2016 Outline Why EDMs of light ions? can we disentagle from BSM? 1. orthogonal to the nucleon EDM can we disentagle BSM models? direct connection between 2.


  1. Electric dipole moments of light nuclei Emanuele Mereghetti November 4th, 2016

  2. Outline Why EDMs of light ions? can we disentagle ¯ θ from BSM? 1. orthogonal to the nucleon EDM can we disentagle BSM models? direct connection between 2. theoretically clean EDMs and high energy parameters? (... not too dirty...) just a little expensive... 3. experimentally feasible

  3. Storage Ring EDM experiments JEDI @ COSY (Julich) • measure spin precession relative to β ( η ∝ d ) � � � � ω e = η e a = g − 2 e 1 ω a = a B − a − β × E m [ E + β × B ] , γ 2 − 1 m 2

  4. Storage Ring EDM experiments JEDI @ COSY (Julich) 10 − 16 e fm by 2020? • measure spin precession relative to β ( η ∝ d ) ❤❤❤❤❤❤❤❤❤❤❤❤❤ ✭ ✭✭✭✭✭✭✭✭✭✭✭✭✭ � � � � ω e = η e a = g − 2 ω a = e 1 a B − a − β × E m [ E + β × B ] , γ 2 − 1 m 2 ❤ a > 0: all electric ring a < 0: electric & magnetic ring ω a vanishes for “magic momentum” need both B & E to cancel ω a e.g. proton p = 0 . 7 GeV, E = 1 . 171 GeV case of deuteron, 3 He

  5. CP violation at 1 GeV 1. Catalog possible / T operators in EFT • one dimension 4 operator: QCD ¯ θ term in principle ¯ θ = O ( 1 ) T 4 = m ∗ ¯ L / θ ¯ qi γ 5 q ... strong CP problem • 9 (+ 8 w. strangeness) dimension 6 operators: 1. 4 (+2) quark bilinears: qEDM and qCEDM c ( q ) c ( q ) m q ˜ m q ˜ qi σ µν g s G µν γ 5 q � γ qi σ µν γ 5 q eF µν − � g L / = − ¯ ¯ T 6 2 2 q = u , d , s q = u , d , s � � � � v 2 v 2 c ( q ) c ( q ) v 2 ˜ v 2 ˜ = O = O γ g Λ 2 Λ 2 Λ ≫ v

  6. CP violation at 1 GeV 1. Catalog possible / T operators in EFT • one dimension 4 operator: QCD ¯ θ term in principle ¯ θ = O ( 1 ) T 4 = m ∗ ¯ L / θ ¯ qi γ 5 q ... strong CP problem • 9 (+ 8 w. strangeness) dimension 6 operators: 2. 1 pure glue: Weinberg three-gluon operator (gCEDM) C ˜ 6 f abc ǫ µναβ G a µρ G c ρ G αβ G b L / = ν T 6 � � v 2 v 2 C ˜ G = O Λ 2 Λ ≫ v

  7. CP violation at 1 GeV 1. Catalog possible / T operators in EFT • one dimension 4 operator: QCD ¯ θ term in principle ¯ θ = O ( 1 ) T 4 = m ∗ ¯ L / θ ¯ qi γ 5 q ... strong CP problem • 9 (+ 8 w. strangeness) dimension 6 operators: 3. 4 (+ 6) four-quark (LR LR & LL RR) Σ ( ud ) (¯ u L u R ¯ d L d R ) + Ξ ( ud ) ¯ d L γ µ u L ¯ d L u R ¯ u L d R − ¯ L / = u R γ µ d R T 6 1 1 Σ ( us ) u L s R + Ξ ( us ) s L γ µ u L ¯ u R γ µ s R + Ξ ( ds ) s L γ µ d L ¯ + ¯ s L u R ¯ ¯ ¯ d R γ µ s R + color 1 1 1 � � � � v 2 v 2 v 2 Σ = O v 2 Ξ = O Λ 2 Λ 2 Λ ≫ v • I will neglect s quarks (but they are interesting!)

  8. Connection to models • new physics models induce one, a subset or all these operators qEDM c ( u , d ) split SUSY γ qCEDM c ( u , d ) MSSM g gCEDM C ˜ 2 Higgs Doublet Model G LR LR Σ ud Leptoquarks LL RR Ξ ud LR symmetric models an incomplete list of possibilities... for more details M. Pospelov and A. Ritz, ‘05; W. Dekens et al , ‘14; J. Engel, M. Ramsey-Musolf and U. van Kolck, ‘13; • goal: identify the distinctive manifestations of EFT operators on nuclei

  9. Chiral Perturbation Theory need to work here theory strongly coupled! PDG 2016 L = − 1 µν G a µν + ¯ 4 G a Dq L + ¯ Dq R − ¯ q L M q R − ¯ q R M q L + L / T 4 + L / q L i / q R i / T 6 • at the moment, we cannot compute nuclear EDMs directly from QCD . . . maybe not too far in the future . . . e.g. NPLQCD collaboration • chiral symmetry symmetries to the rescue! SU L ( 2 ) × SU R ( 2 ) & spontaneous breaking to SU V ( 2 ) • pions are Goldstone boson • strong constraints on low-energy interactions of pions with nucleons, photons etc.

  10. Chiral Perturbation Theory L = − 1 µν G a µν + ¯ 4 G a Dq L + ¯ Dq R − ¯ q L M q R − ¯ q R M q L + L / T 4 + L / q L i / q R i / T 6 • at the moment, we cannot compute nuclear EDMs directly from QCD • chiral symmetry to the rescue! SU L ( 2 ) × SU R ( 2 ) → SU V ( 2 ) pions are Goldstone boson strong constraints m π ≪ Λ χ ∼ 1 GeV on pion-N interactions

  11. Chiral Perturbation Theory Chiral Perturbation Theory • low-energy theory of nucleon and pions • consistent with the symmetries of QCD • organized in an expansion in powers of Q , m π / Λ χ (∆ / T ) � L (∆) � L [ π , N ] = [ π , N ] + L T , f [ π , N ] f / f , ∆ f , ∆ / T • ∆ : # of inverse powers of Λ χ in coefficients • f = 0 , 2 , 4: # of nucleon legs ∆ = d + 2 m + f / 2 − 2 ≥ 0 • d : # of derivatives or photon fields • m : # of quark mass insertions

  12. Chiral Perturbation Theory Chiral Perturbation Theory • low-energy theory of nucleon and pions • consistent with the symmetries of QCD • organized in an expansion in powers of Q , m π / Λ χ Niv · DN − g A L ( 0 ) f = 2 + 4 = ¯ N τ S µ D µ π N + C 11 ¯ ¯ NN ¯ NN + C ττ ¯ N τ N · ¯ N τ N F π • ∆ : # of inverse powers of Λ χ in coefficients • f = 0 , 2 , 4: # of nucleon legs ∆ = d + 2 m + f / 2 − 2 ≥ 0 • d : # of derivatives or photon fields • m : # of quark mass insertions • e.g. ∆ = 0 1. interactions fixed by symmetry/power counting 2. low-energy constants (LECs) contain non-perturbative info O ( 1 ) numbers, fixed by experiments

  13. Chiral Perturbation Theory. A = 1 A ≤ 1: • only one relevant scale Q ∼ m π • perturbative expansion of the amplitudes � Q � ν T ∼ Λ χ ν = 4 � ν = 2 L + ∆ i , Λ χ = 2 π F π i • more loops = ⇒ Q / Λ χ suppression • and/or insertions of subleading vertices • at a given ν , only finite number of diagrams

  14. Chiral Perturbation Theory. A ≥ 2 g 2 ∼ A F 2 π • another relevant scale: binding energy Q 2 / m N

  15. Chiral Perturbation Theory. A ≥ 2 g 2 g 4 m 2 Q 5 Q 4 ∼ A ∼ × A × N F 2 4 π m N F 4 ( Q 2 + m 2 π ) 2 Q 4 π π integration measure vertices & pion prop. nucleon prop. • another relevant scale: binding energy Q 2 / m N • in loops E N ∼ Q 2 / m N nucleon energy pion momentum p π ∼ Q nucleon momentum p N ∼ Q

  16. Chiral Perturbation Theory. A ≥ 2 g 2 g 4 m 2 Q 5 Q 4 ∼ A ∼ × A × N F 2 4 π m N F 4 ( Q 2 + m 2 π ) 2 Q 4 π π integration measure vertices & pion prop. nucleon prop. • another relevant scale: binding energy Q 2 / m N • in loops E N ∼ Q 2 / m N nucleon energy pion momentum p π ∼ Q nucleon momentum p N ∼ Q loop ∼ g 2 g 2 ∼ g 2 A m N Q Q A A M NN ∼ 300 MeV F 2 4 π F 2 F 2 M NN π π π • loop not (at best barely) suppressed

  17. Chiral Perturbation Theory. A ≥ 2 + . . . Weinberg’s recipe: follow χ PT power counting • identify “irreducible diagram”: nucleon prop. not “pinched” E N ∼ Q define the potential V

  18. Chiral Perturbation Theory. A ≥ 2 Weinberg’s recipe: follow χ PT power counting • identify “irreducible diagram”: nucleon prop. not “pinched” E N ∼ Q define the potential V i.e. solve Lippmann-Schwinger • iterate the nucleon-nucleon potential equation

  19. Chiral Perturbation Theory. A ≥ 2 Weinberg’s recipe: • identify “irreducible diagram”: follow χ PT power counting nucleon prop. not “pinched” E N ∼ Q define the potential V i.e. solve Lippmann-Schwinger • iterate the nucleon-nucleon potential equation • “non-perturbative pions” 1. pion exchange leading effect Q / M NN ∼ 1

  20. Chiral Perturbation Theory. A ≥ 2 Weinberg’s recipe: • identify “irreducible diagram”: follow χ PT power counting nucleon prop. not “pinched” E N ∼ Q define the potential V i.e. solve Lippmann-Schwinger • iterate the nucleon-nucleon potential equation • “non-perturbative pions” 1. LO potential: contact S-wave operator • “perturbative pions” 2. pion exchange as perturbation: Q / M NN ≪ 1

  21. The T -violating Chiral Lagrangian • include dim-four and dim-six / T in χ PT Lagrangian � ¯ S µ v ν NF µν − ¯ N π · τ N − ¯ g 0 g 1 − 2 ¯ d 0 + ¯ ¯ F π π 3 ¯ � L / = d 1 τ 3 N NN T F π ¯ ¯ C 1 C 2 NN ∂ µ (¯ ¯ NS µ N ) + N τ N ∂ µ (¯ ¯ NS µ τ N ) + F 2 F 2 π π • at LO, nucleon/nuclear EDMs expressed in terms of a few couplings ¯ d 0 , ¯ d 1 neutron & proton EDM, one-body contribs. to A ≥ 2 nuclei ¯ g 0 , ¯ g 1 pion loop to nucleon & proton EDMs leading / T OPE potential ¯ C 1 , ¯ C 2 short-range / T potential relative size of the coupling ( ∆ / T ) depends on chiral/isospin properties of / T source

  22. Low energy couplings. ¯ θ term ¯ ¯ ¯ g 0 / F π ¯ g 1 / F π d 0 , 1 × Q C 1 , 2 × Q m 2 m 2 ¯ θ × π ε π 1 NDA F π Λ χ Λ 2 χ ∆ / 1 3 T ¯ θ term: q τ 3 q + m ∗ ¯ L QCD = ¯ Dq − ¯ m ¯ qq + ¯ m ε ¯ θ ¯ qi γ 5 q qi / m u + m d m ε = m d − m u m u m d ¯ = , ¯ , m ∗ = m m u + m d 2 2 • ¯ θ breaks chiral symmetry = ⇒ non-derivative π - N couplings � • but not isospin = ⇒ need extra m u − m d to generate ¯ g 1

Recommend


More recommend