eigenvalues of random normal matrices
play

Eigenvalues of random normal matrices Random normal matrix model: - PowerPoint PPT Presentation

Eigenvalues of random normal matrices Random normal matrix model: Droplets Example: concentric ellipses Local droplets 1 0.5 -1.5 -1 -0.5 0.5 -0.5 -1 hypotrochoids deltoid Definition: K is a local droplet if Hele-Shaw flow 1 0.5


  1. Eigenvalues of random normal matrices

  2. Random normal matrix model:

  3. Droplets Example:

  4. concentric ellipses

  5. Local droplets 1 0.5 -1.5 -1 -0.5 0.5 -0.5 -1 hypotrochoids deltoid Definition: K is a local droplet if

  6. Hele-Shaw flow 1 0.5 -1.5 -1 -0.5 0.5 -0.5 -1

  7. S-function and local droplets

  8. Two pieces of the dynamics

  9. ?-function as conformal welding (mating)

  10. centaurs

  11. Examples of QDs bounded unbounded bounded . inversion d=0 d=1 . . . . d=2 d=1 limacons Neumann ovals wings

  12. Example: 7 cardioids in ellipse

  13. Connectivity bounds

  14. Examples

  15. Comments:

  16. Bers slice for hexagonal torus

  17. Inside the droplet • Convergence of fluctuations to a Gaussian field. Use of RNM model to approximate various objects related to GFF • Universality laws at regular points in the bulk and boundary, some types of singular points in the bulk

  18. References • Based on joint work with Seung Yeop Lee. I thank Seung Yeop for pictures and crucial contributions • Use of conformal dynamics was inspired by a paper by Khavinson and Swiatek • Interesting analogy with some work in dimer model (Kenyon, Okounkov, Sheffield)

Recommend


More recommend