eigenvalues and eigenvectors few concepts to remember
play

Eigenvalues and Eigenvectors Few concepts to remember from linear - PowerPoint PPT Presentation

Eigenvalues and Eigenvectors Few concepts to remember from linear algebra Let be an matrix and the linear transformation = Rank: maximum number of linearly independent


  1. Eigenvalues and Eigenvectors

  2. Few concepts to remember from linear algebra Let ๐‘ฉ be an ๐‘œร—๐‘› matrix and the linear transformation ๐’› = ๐‘ฉ๐’š ๐‘ฉ ๐’› โˆˆ โ„› ๐’ ๐’š โˆˆ โ„› ๐’ โ†’ Rank: maximum number of linearly independent columns or rows of ๐‘ฉ โ€ข Range ๐‘ฉ = ๐’› = ๐‘ฉ๐’š โˆ€๐’š} โ€ข Null ๐‘ฉ = ๐’š ๐‘ฉ๐’š = ๐Ÿ} โ€ข

  3. Eigenvalue problem Let ๐‘ฉ be an ๐‘œร—๐‘œ matrix: ๐’š โ‰  ๐Ÿ is an eigenvector of ๐‘ฉ if there exists a scalar ๐œ‡ such that ๐‘ฉ ๐’š = ๐œ‡ ๐’š where ๐œ‡ is called an eigenvalue . If ๐’š is an eigenvector, then ฮฑ๐’š is also an eigenvector. Therefore, we will usually seek for normalized eigenvectors , so that ๐’š = 1 Note: When using Python, numpy.linalg.eig will normalize using p=2 norm.

  4. How do we find eigenvalues? Linear algebra approach: ๐‘ฉ ๐’š = ๐œ‡ ๐’š ๐‘ฉ โˆ’ ๐œ‡ ๐‘ฑ ๐’š = ๐Ÿ Therefore the matrix ๐‘ฉ โˆ’ ๐œ‡ ๐‘ฑ is singular โŸน ๐‘’๐‘“๐‘ข ๐‘ฉ โˆ’ ๐œ‡ ๐‘ฑ = 0 ๐‘ž ๐œ‡ = ๐‘’๐‘“๐‘ข ๐‘ฉ โˆ’ ๐œ‡ ๐‘ฑ is the characteristic polynomial of degree ๐‘œ . In most cases, there is no analytical formula for the eigenvalues of a matrix (Abel proved in 1824 that there can be no formula for the roots of a polynomial of degree 5 or higher) โŸน Approximate the eigenvalues numerically !

  5. Example ๐‘ฉ = 2 1 ๐‘’๐‘“๐‘ข 2 โˆ’ ๐œ‡ 1 2 โˆ’ ๐œ‡ = 0 4 2 4 Solution of characteristic polynomial gives: ๐œ‡ . = 4, ๐œ‡ / = 0 To get the eigenvectors, we solve: ๐‘ฉ ๐’š = ๐œ‡ ๐’š ๐‘ฆ $ ๐’š = 1 2 โˆ’ (4) 1 = 0 ๐‘ฆ % 2 4 2 โˆ’ (4) 0 ๐‘ฆ $ 2 โˆ’ (0) 1 = 0 ๐’š = โˆ’1 ๐‘ฆ % 4 2 โˆ’ (0) 0 2 Notes: The matrix ๐‘ฉ is singular (det(A)=0), and rank( ๐‘ฉ )=1 The matrix has two distinct real eigenvalues The eigenvectors are linearly independent

  6. Diagonalizable Matrices A ๐‘œร—๐‘œ matrix ๐‘ฉ with ๐‘œ linearly independent eigenvectors ๐’— is said to be diagonalizable . ๐‘ฉ ๐’— ๐Ÿ = ๐œ‡ . ๐’— ๐Ÿ , ๐‘ฉ ๐’— ๐Ÿ‘ = ๐œ‡ / ๐’— ๐Ÿ‘ , โ€ฆ ๐‘ฉ ๐’— ๐’ = ๐œ‡ ; ๐’— ๐’ , In matrix form: ๐œ‡ # 0 0 ๐‘ฉ ๐’— ๐Ÿ โ€ฆ ๐’— ๐’ = ๐œ‡ # ๐’— ๐Ÿ ๐œ‡ $ ๐’— ๐’ = ๐’— ๐Ÿ โ€ฆ ๐’— ๐’ โ€ฆ 0 โ‹ฑ 0 0 0 ๐œ‡ $ This corresponds to a similarity transformation ๐‘ฉ๐‘ฝ = ๐‘ฝ๐‘ฌ โŸบ ๐‘ฉ = ๐‘ฝ๐‘ฌ๐‘ฝ %๐Ÿ

  7. ๐‘’๐‘“๐‘ข 2 โˆ’ ๐œ‡ 1 ๐‘ฉ = 2 1 Example 2 โˆ’ ๐œ‡ = 0 4 4 2 Solution of characteristic polynomial gives: ๐œ‡ . = 4, ๐œ‡ / = 0 To get the eigenvectors, we solve: ๐‘ฉ ๐’š = ๐œ‡ ๐’š ๐‘ฆ $ ๐’š = 0.447 2 โˆ’ (4) 1 = 0 ๐’š = 1 or normalized ๐‘ฆ % 0.894 4 2 โˆ’ (4) 0 2 eigenvector ( ๐‘ž = 2 norm) ๐‘ฆ $ ๐’š = โˆ’0.447 2 โˆ’ (0) 1 ๐’š = โˆ’1 = 0 ๐‘ฆ % 0.894 2 4 2 โˆ’ (0) 0 ๐‘ฝ = 0.447 โˆ’0.447 ๐‘ฌ = 4 0 ๐‘ฉ = ๐‘ฝ๐‘ฌ๐‘ฝ <. 0.894 0.894 0 0 Notes: The matrix ๐‘ฉ is singular (det(A)=0), and rank( ๐‘ฉ )=1 Since ๐‘ฉ has two linearly independent eigenvectors, the matrix ๐‘ฝ is full rank, and hence, the matrix ๐‘ฉ is diagonalizable.

  8. Example The eigenvalues of the matrix: ๐‘ฉ = 3 โˆ’18 2 โˆ’9 are ๐œ‡ . = ๐œ‡ / = โˆ’3 . Select the incorrect statement: A) Matrix ๐‘ฉ is diagonalizable B) The matrix ๐‘ฉ has only one eigenvalue with multiplicity 2 C) Matrix ๐‘ฉ has only one linearly independent eigenvector D) Matrix ๐‘ฉ is not singular

  9. Letโ€™s look back at diagonalizationโ€ฆ 1) If a ๐‘œร—๐‘œ matrix ๐‘ฉ has ๐‘œ linearly independent eigenvectors ๐’š then ๐‘ฉ is diagonalizable, i.e., ๐‘ฉ = ๐‘ฝ๐‘ฌ๐‘ฝ <๐Ÿ where the columns of ๐‘ฝ are the linearly independent normalized eigenvectors ๐’š of ๐‘ฉ (which guarantees that ๐‘ฝ <๐Ÿ exists) and ๐‘ฌ is a diagonal matrix with the eigenvalues of ๐‘ฉ . 2) If a ๐‘œร—๐‘œ matrix ๐‘ฉ has less then ๐‘œ linearly independent eigenvectors, the matrix is called defective (and therefore not diagonalizable). 3) If a ๐‘œร—๐‘œ symmetric matrix ๐‘ฉ has ๐‘œ distinct eigenvalues then ๐‘ฉ is diagonalizable.

  10. A ๐’ร—๐’ symmetric matrix ๐‘ฉ with ๐’ distinct eigenvalues is diagonalizable. Suppose ๐œ‡ , ๐’— and ๐œˆ, ๐’˜ are eigenpairs of ๐‘ฉ ๐œ‡ ๐’— = ๐‘ฉ๐’— ๐œˆ ๐’˜ = ๐‘ฉ๐’˜ ๐œ‡ ๐’— = ๐‘ฉ๐’— โ†’ ๐’˜ 1 ๐œ‡ ๐’— = ๐’˜ 1 ๐‘ฉ๐’— ๐œ‡ ๐’˜ 1 ๐’— = ๐‘ฉ ๐‘ผ ๐’˜ 1 ๐’— = ๐‘ฉ ๐’˜ 1 ๐’— = ๐œˆ ๐’˜ 1 ๐’— โ†’ ๐œˆ โˆ’ ๐œ‡ ๐’˜ 1 ๐’— = 0 If all ๐‘œ eigenvalues are distinct โ†’ ๐œˆ โˆ’ ๐œ‡ โ‰  0 Hence, ๐’˜ 1 ๐’— = 0 , i.e., the eigenvectors are orthogonal (linearly independent), and consequently the matrix ๐‘ฉ is diagonalizable. Note that a diagonalizable matrix ๐‘ฉ does not guarantee ๐‘œ distinct eigenvalues.

  11. Some things to remember about eigenvalues: โ€ข Eigenvalues can have zero value โ€ข Eigenvalues can be negative โ€ข Eigenvalues can be real or complex numbers โ€ข A ๐‘œร—๐‘œ real matrix can have complex eigenvalues โ€ข The eigenvalues of a ๐‘œร—๐‘œ matrix are not necessarily unique. In fact, we can define the multiplicity of an eigenvalue. โ€ข If a ๐‘œร—๐‘œ matrix has ๐‘œ linearly independent eigenvectors, then the matrix is diagonalizable

  12. How can we get eigenvalues numerically? Assume that ๐‘ฉ is diagonalizable (i.e., it has ๐‘œ linearly independent eigenvectors ๐’— ). We can propose a vector ๐’š which is a linear combination of these eigenvectors: ๐’š = ๐›ฝ # ๐’— # + ๐›ฝ ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐’— $ Then we evaluate ๐‘ฉ ๐’š : ๐‘ฉ ๐’š = ๐›ฝ # ๐‘ฉ๐’— # + ๐›ฝ ' ๐‘ฉ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐‘ฉ๐’— $ And since ๐‘ฉ๐’— # = ๐œ‡ # ๐’— # we can also write: ๐‘ฉ ๐’š = ๐›ฝ # ๐œ‡ # ๐’— # + ๐›ฝ ' ๐œ‡ ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐œ‡ $ ๐’— $ where ๐œ‡ ( is the eigenvalue corresponding to eigenvector ๐’— ( and we assume |๐œ‡ # | > |๐œ‡ ' | โ‰ฅ |๐œ‡ ) | โ‰ฅ โ‹ฏ โ‰ฅ |๐œ‡ $ |

  13. Power Iteration Our goal is to find an eigenvector ๐’— ( of ๐‘ฉ. We will use an iterative process, where we start with an initial vector, where here we assume that it can be written as a linear combination of the eigenvectors of ๐‘ฉ . ๐’š * = ๐›ฝ # ๐’— # + ๐›ฝ ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐’— $ And multiply by ๐‘ฉ to get: ๐’š # = ๐‘ฉ ๐’š * = ๐›ฝ # ๐œ‡ # ๐’— # + ๐›ฝ ' ๐œ‡ ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐œ‡ $ ๐’— $ ๐’š ' = ๐‘ฉ ๐’š # = ๐›ฝ # ๐œ‡ # ' ๐’— # + ๐›ฝ ' ๐œ‡ ' ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐œ‡ $ ' ๐’— $ โ‹ฎ ๐’š + = ๐‘ฉ ๐’š +%# = ๐›ฝ # ๐œ‡ # + ๐’— # + ๐›ฝ ' ๐œ‡ ' + ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐œ‡ $ + ๐’— $ Or rearrangingโ€ฆ + + ๐œ‡ ' ๐œ‡ $ ๐’š + = ๐œ‡ # + ๐›ฝ # ๐’— # + ๐›ฝ ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐’— $ ๐œ‡ # ๐œ‡ #

  14. Power Iteration B B ๐œ‡ / ๐œ‡ ; ๐’š B = ๐œ‡ . B ๐›ฝ . ๐’— . + ๐›ฝ / ๐’— / + โ‹ฏ + ๐›ฝ ; ๐’— ; ๐œ‡ . ๐œ‡ . Assume that ๐›ฝ . โ‰  0 , the term ๐›ฝ . ๐’— . dominates the others when ๐‘™ is very large. B Since |๐œ‡ . > |๐œ‡ / , we have C ! โ‰ช 1 when ๐‘™ is large C " Hence, as ๐‘™ increases, ๐’š B converges to a multiple of the first eigenvector ๐’— . , i.e., C " # = ๐›ฝ . ๐’— . or ๐’š B โ†’ ๐›ฝ . ๐œ‡ . B ๐’— . ๐’š # lim Bโ†’D

  15. How can we now get the eigenvalues? If ๐’š is an eigenvector of ๐‘ฉ such that ๐‘ฉ ๐’š = ๐œ‡ ๐’š then how can we evaluate the corresponding eigenvalue ๐œ‡ ? ๐œ‡ = ๐’š ๐‘ผ ๐‘ฉ๐’š Rayleigh coefficient ๐’š ๐‘ผ ๐’š

  16. Normalized Power Iteration & & ๐œ‡ % ๐œ‡ ' ๐’š & = ๐œ‡ $ & ๐›ฝ $ ๐’— $ + ๐›ฝ % ๐’— % + โ‹ฏ + ๐›ฝ ' ๐’— ' ๐œ‡ $ ๐œ‡ $ ๐’š ๐Ÿ = arbitrary nonzero vector ๐’š ๐Ÿ ๐’š ๐Ÿ = ๐’š ๐Ÿ for ๐‘™ = 1,2, โ€ฆ ๐’› B = ๐‘ฉ ๐’š B<. ๐’› # ๐’š B = ๐’› #

  17. Normalized Power Iteration B B ๐œ‡ / ๐œ‡ ; ๐’š B = ๐œ‡ . B ๐›ฝ . ๐’— . + ๐›ฝ / ๐’— / + โ‹ฏ + ๐›ฝ ; ๐’— ; ๐œ‡ . ๐œ‡ . What if the starting vector ๐’š ๐Ÿ have no component in the dominant eigenvector ๐’— $ ( ๐›ฝ $ = 0 )? Demo โ€œPower Iteration

  18. Normalized Power Iteration B B ๐œ‡ / ๐œ‡ ; ๐’š B = ๐œ‡ . B ๐›ฝ . ๐’— . + ๐›ฝ / ๐’— / + โ‹ฏ + ๐›ฝ ; ๐’— ; ๐œ‡ . ๐œ‡ . What if the first two largest eigenvalues (in magnitude) are the same, |๐œ‡ $ = |๐œ‡ % ? B B ๐’š B = ๐œ‡ . B ๐›ฝ . ๐’— . + ๐œ‡ . B ๐œ‡ / ๐œ‡ ; ๐›ฝ / ๐’— / + ๐œ‡ . B โ€ฆ + ๐›ฝ ; ๐’— ; ๐œ‡ . ๐œ‡ . Demo โ€œPower Iteration

  19. Potential pitfalls Starting vector ๐’š ๐Ÿ may have no component in the dominant eigenvector ๐’— " (๐›ฝ " = 1. 0) . This is usually unlikely to happen if ๐’š ๐Ÿ is chosen randomly, and in practice not a problem because rounding will usually introduce such component. 2. Risk of eventual overflow (or underflow): in practice the approximated eigenvector is normalized at each iteration (Normalized Power Iteration) First two largest eigenvalues (in magnitude) may be the same: |๐œ‡ " | = |๐œ‡ # | . In this 3. case, power iteration will give a vector that is a linear combination of the corresponding eigenvectors: โ€ข If signs are the same, the method will converge to correct magnitude of the eigenvalue. If the signs are different, the method will not converge. โ€ข This is a โ€œrealโ€ problem that cannot be discounted in practice.

  20. Error B B ๐œ‡ / ๐œ‡ ; ๐’š B = ๐œ‡ . B ๐›ฝ . ๐’— . + ๐›ฝ / ๐’— / + โ‹ฏ + ๐›ฝ ; ๐’— ; ๐œ‡ . ๐œ‡ . ๐น๐‘ ๐‘ ๐‘๐‘  We can see from the above that the rate of convergence depends on the ratio C ! C " , that is: B ๐œ‡ / ๐œ‡ . <B ๐’š B โˆ’ ๐›ฝ . ๐’— . = ๐‘ƒ ๐œ‡ .

  21. Convergence and error B ๐’š B = ๐’— . + ๐›ฝ / ๐œ‡ / ๐’— / + โ‹ฏ ๐›ฝ . ๐œ‡ . ๐’‡ & ๐’‡ PQR ๐’‡ P โ‰ˆ ? S ? R Power method has linear convergence, which is quite slow.

  22. Iclicker question A) 0.1536 B) 0.192 C) 0.09 D) 0.027

Recommend


More recommend