EI331 Signals and Systems Lecture 27 Bo Jiang John Hopcroft Center for Computer Science Shanghai Jiao Tong University May 30, 2019
Contents 1. Evaluation of Definite Integrals Using Residues 2. Z -transform 3. Properties of Z -transform 4. Analysis of DT LTI Systems by Z -transform 1/35
� ∞ −∞ R ( x ) dx R ( x ) = N ( x ) D ( x ) is a rational function of x , where N , D are polynomials with deg D ≥ deg N + 2 , and R has no singularity on the real axis. y 1. Pick a r large enough s.t. the upper half disk centered at 0 contains all C r the singularities z 1 , . . . , z K , of R ( z ) in z 2 the upper half plane (we don’t care z 1 z 3 about those in the lower half plane) r x − r � r K � � 2. R ( x ) dx + R ( z ) dz = j 2 π Res( R , z k ) − r C r k = 1 � 3. lim R ( z ) dz = 0 by the condition deg D ≥ deg N + 2 r →∞ C r � ∞ K � 4. R ( x ) dx = j 2 π Res( R , z k ) −∞ k = 1 2/35
� ∞ −∞ R ( x ) dx y Lemma. Suppose f ( z ) is continuous on D = { z : R < | z | < ∞ , θ 1 ≤ arg z ≤ θ 2 } , γ r where 0 ≤ θ 1 < θ 2 ≤ 2 π . Let γ r be the θ 2 θ 1 arc z ( t ) = re j θ , r > R , θ ∈ [ θ 1 , θ 2 ] . If lim sup D ∋ z →∞ zf ( z ) = 0 , then r x − r � − R R lim f ( z ) dz = 0 r →∞ γ r Proof. Since lim sup D ∋ z →∞ zf ( z ) = 0 , given any ǫ > 0 , there exists an R ǫ ǫ s.t. | zf ( z ) | < θ 2 − θ 1 for z ∈ D and | z | > R 0 . For r > R 0 , � � � � � ǫ � � f ( z ) dz � ≤ | f ( z ) | ds ≤ ( θ 2 − θ 1 ) rds = ǫ � � � γ r γ r γ r NB. Item 3 of the previous slide follows from the lemma with θ 1 = 0 and θ 2 = π . 3/35
Example � ∞ x 2 dx Evaluate I = ( x 2 + a 2 )( x 2 + b 2 ) , where a , b > 0 −∞ z 2 Solution. R ( z ) = ( z 2 + a 2 )( z 2 + b 2 ) has four simple poles at z = ± ja , ± jb . Two of them, ja , jb , are in the upper half plane. The residues are a Res( R , ja ) = lim z → ja ( z − ja ) R ( z ) = 2 j ( a 2 − b 2 ) − b Res( R , jb ) = lim z → jb ( z − jab ) R ( z ) = 2 j ( a 2 − b 2 ) Thus π I = j 2 π [Res( R , ja ) + Res( R , jb )] = a + b 4/35
� ∞ −∞ R ( x ) e jax dx ( a > 0 ) R ( x ) = N ( x ) D ( x ) is a rational function of x , where deg D ≥ deg N + 1 , and R has no singularity on the real axis. y 1. Pick a r large enough s.t. the upper C r half disk centered at 0 contains all z 2 the singularities z 1 , . . . , z K , of R ( z ) in z 1 z 3 the upper half plane r x − r � r K � � R ( x ) e jax dx + R ( z ) e jaz dz = j 2 π Res[ R ( z ) e jaz , z k ] 2. − r C r k = 1 � R ( z ) e jaz dz = 0 by the condition deg D ≥ deg N + 1 and 3. lim r →∞ C r y Jordan’s Lemma − r r � ∞ K x � R ( x ) e jax dx = j 2 π Res[ R ( z ) e jaz , z k ] z ′ 4. z ′ 1 3 z ′ −∞ k = 1 2 C ′ r NB. If a < 0 , use the lower half disk instead. 5/35
Jordan’s Lemma y Lemma. Suppose f ( z ) is continuous on D = { z : R < | z | < ∞ , Im z ≥ 0 } . If C r D ∋ z →∞ f ( z ) = 0 , and a > 0 , then lim � f ( z ) e jaz dz = 0 lim r →∞ C r r x where C r is z ( t ) = re j θ , r > R , θ ∈ [ 0 , π ] . − r − R R � Proof. Let I r = C r f ( z ) e jaz dz and M r = max z ∈ C r | f ( z ) | . Then � π � π/ 2 � e − ar sin θ rd θ = 2 M r e − ar sin θ rd θ | f ( z ) e jaz | ds ≤ M r | I r | ≤ γ r 0 0 Using sin θ ≥ 2 π θ for θ ∈ [ 0 , π 2 ] and lim r →∞ M r = 0 , � π/ 2 π θ rd θ = π M r e − ar 2 a ( 1 − e − ar ) → 0 , as r → ∞ | I r | ≤ 2 M r 0 NB. If a < 0 , the lemma still holds if we replace D and C r by { z : R < | z | < ∞ , Im z ≤ 0 } and z ( t ) = re − j θ , r > R , θ ∈ [ 0 , π ] . 6/35
Example � ∞ x sin x Evaluate I = x 2 + a 2 dx , where a > 0 0 z Solution. R ( z ) = z 2 + a 2 has two simple poles at z = ± ja . The pole ja is in the upper half plane, z → ja ( z − ja ) R ( z ) e jz = e − a Res[ R ( z ) e jz , ja ] = lim 2 Thus � ∞ xe jx x 2 + a 2 dx = j 2 π Res[ R ( z ) e jz , ja ] = j π e − a −∞ Since x sin x x 2 + a 2 is even, � ∞ � ∞ xe jx x sin x x 2 + a 2 dx = π I = 1 x 2 + a 2 dx = 1 2 e − a 2 Im 2 −∞ −∞ 7/35
Example 1 Find the inverse CTFT of X ( j ω ) = a + j ω , where a > 0 � ∞ Solution. x ( t ) = 1 1 a + j ω e j ω t d ω 2 π −∞ 1 R ( z ) = a + jz has a simple poles at z = ja in the upper half plane. y For t > 0 , C r � ∞ x ( t ) = 1 ja X R ( ω ) e j ω t d ω = j Res[ R ( z ) e jzt , ja ] 2 π −∞ r x − r z → ja ( z − ja ) R ( z ) e jzt = e − at = j lim y For t < 0 , R ( z ) is analytic in the lower half plane, ja X so − r r � ∞ x ( t ) = 1 R ( ω ) e j ω t d ω = 0 x 2 π −∞ C ′ Therefore, x ( t ) = e − at u ( t ) . r 8/35
Contents 1. Evaluation of Definite Integrals Using Residues 2. Z -transform 3. Properties of Z -transform 4. Analysis of DT LTI Systems by Z -transform 9/35
Z -transform Recall the response of a DT LTI system to the input x [ n ] = z n is y [ n ] = ( x ∗ h )[ n ] = H ( z ) z n where h is the impulse response of the system and ∞ � h [ k ] z − k H ( z ) = k = −∞ The system function H ( z ) is called the z -transform of h . In general, the z -transform of a DT signal x [ n ] is ∞ � x [ n ] z − n X ( z ) = n = −∞ also denoted by Z X = Z { x } , or x [ n ] ← − − → X ( z ) 10/35
Z -transform Note ∞ ∞ x [ n ] z − n = � � c n z n X ( z ) = n = −∞ n = −∞ is a Laurent series at z = 0 whose coefficient for z n is c n = x [ − n ] . As a Laurent series, the z -transform converges on an annulus centered at z = 0 , called its region of convergence (ROC) Relation with DTFT ∞ z = re j ω = { x [ n ] r − n } e − j ω n = F { x [ n ] r − n } � ⇒ X ( re j ω ) = n = −∞ If the ROC includes the unit circle, setting r = 1 yields � z = e j ω = X ( e j ω ) = F { x } ( e j ω ) X ( z ) � 11/35
Example Im For x [ n ] = a n u [ n ] , ∞ 1 z a n z − n = � X ( z ) = 1 − az − 1 = z − a , X Re n = 0 a 1 with ROC | z | > | a | . If | a | < 1 , the ROC contains the unit circle, Im 1 F { x } ( e j ω ) = X ( e j ω ) = 1 − ae − j ω If | a | > 1 , the DTFT does not exist. X Re a 1 If | a | = 1 , the DTFT exists as a distribution, F { x } ( e j ω ) � = X ( z ) � � z = e j ω 12/35
Example Im For x [ n ] = − a n u [ − n − 1 ] , − 1 1 z a n z − n = � X ( z ) = − 1 − az − 1 = z − a , X Re a n = −∞ 1 with ROC | z | < | a | . If | a | > 1 , the ROC contains the unit circle, Im 1 F { x } ( e j ω ) = X ( e j ω ) = 1 − ae − j ω If | a | < 1 , the DTFT does not exist. X Re a 1 If | a | = 1 , the DTFT exists as a distribution, F { x } ( e j ω ) � = X ( z ) � � z = e j ω 13/35
Importance of ROC Im z Z x 1 [ n ] = a n u [ n ] ← − − → X 1 ( z ) = z − a , | z | > | a | X Re a 1 z Z x 2 [ n ] = − a n u [ − n − 1 ] ← − − → X 2 ( z ) = z − a , | z | < | a | Im Different signals can have the same X ( z ) but different ROCs, consistent with the X Re fact a function has different Laurent a 1 series in different annuli of analyticity. Always specify ROC for z -transforms! 14/35
Example � 1 � n u [ n ] − 6 � 1 � n u [ n ] , For x [ n ] = 7 3 2 ∞ � n � n � � � 1 � 1 � z − n X ( z ) = 7 − 6 3 2 n = 0 7 6 Im = 3 z − 1 − 1 − 1 1 − 1 2 z − 1 1 − 3 2 z − 1 = ( 1 − 1 3 z − 1 )( 1 − 1 2 z − 1 ) z ( z − 3 2 ) Re = X X 1 ( z − 1 3 )( z − 1 1 1 3 2 ) 3 2 2 with ROC | z | > 1 2 . | x [ n ] | = 1 � R = lim sup n 2 n →∞ 15/35
Example � n sin � π � 1 � 1 4 � n u [ n ] − 1 � 1 4 � n u [ n ] , � u [ n ] = 1 3 e j π 3 e − j π For x [ n ] = 4 n 3 2 j 2 j X ( z ) = 1 1 4 z − 1 − 1 1 1 − 1 3 e j π 1 − 1 3 e − j π 2 j 2 j 4 z − 1 1 Im 2 z √ 3 = ( z − 1 3 e j π 4 )( z − 1 3 e − j π 4 ) with ROC | z | > 1 3 . X Re 1 1 X 3 e j π 3 e − j π Simple poles at z = 1 4 and z = 1 3 4 A simple zero at z = 0 1 2 ζ By ζ = 1 √ z , X ( ζ ) = 3 4 ζ ) , so X ( z ) also has a simple 3 e j π 3 e − j π ( 1 − 1 4 ζ )( 1 − 1 zero at ∞ . 16/35
Rational Transforms A rational transform X has the following form X ( z ) = N ( z ) D ( z ) where N , D are polynomials that are coprime, i.e. they have no common factors of degree ≥ 1 . By the Fundamental Theorem of Algebra, � n k = 1 ( z − z k ) X ( z ) = A � m k = 1 ( z − p k ) with the convention � 0 k = 1 · = 1 . • z 1 , . . . , z n are the finite zeros of X • p 1 , . . . , p m are the finite poles of X • If n > m , X has a pole of order n − m at ∞ • If n < m , X has a zero of order m − n at ∞ 17/35
Rational Transforms A rational function X is determined by its zeros and poles in C , including their orders, up to a multiplicative constant factor. A rational z -transform is determined by its pole-zero plot and ROC, up to a multiplicative constant factor. Im Example. ( z + 2 )( z − e j π 6 ) X ( z ) = A 2 e j 5 π ( z − 3 2 )( z − 1 4 )( z − 2 e − j π 4 ) e j π 2 e j 5 π 6 1 4 X X Re Four possibilities for ROC 3 2 • | z | < 1 / 2 • 1 / 2 < | z | < 3 / 2 X − 2 2 e − j π • 3 / 2 < | z | < 2 4 • 2 < | z | < ∞ 18/35
Recommend
More recommend