efficient parametric identification for stl
play

Efficient Parametric Identification for STL Thomas Ferr` ere Oded - PowerPoint PPT Presentation

Efficient Parametric Identification for STL Thomas Ferr` ere Oded Maler Alexey Bakhirkin Monitoring vs. Parametric Identification Monitoring Do traces of a black box satisfy a property? Spec w SAT ? Trace w System Monitor 0 or 1


  1. Efficient Parametric Identification for STL Thomas Ferr` ere Oded Maler Alexey Bakhirkin

  2. Monitoring vs. Parametric Identification Monitoring Do traces of a black box satisfy a property? Spec ϕ w SAT ϕ ? Trace w System Monitor 0 or 1

  3. Monitoring vs. Parametric Identification Parametric Identification What is the value of a parameter of a black box? Spec ϕ [ p ] For which p , w SAT ϕ [ p ]? Trace w Set of vals System Monitor of p ◮ Find the set of all or tightest or etc values of parameters. ◮ From it, find the parameter of the black box.

  4. Our Setting 2 x 1 0 0 5 10 15 20 25 30 2 y 1 0 0 5 10 15 20 25 30 ◮ Real-valued. ◮ Piecewise-constant interpolation. ◮ Time is bounded. ◮ Offline computation. ◮ Specification language – Signal Temporal Logic

  5. Signal Temporal Logic Standard Semantics for Monitoring ϕ ::= x ≥ c | x ≤ c | F [ a , b ] ϕ | ϕ 1 U ϕ 2 | true | false | ¬ ϕ | ϕ 1 ∨ ϕ 2 | ϕ 1 ∧ ϕ 2 | A formula evaluates to true or false at a time point t . ◮ x ≤ c , if x ( t ) ≤ c . ◮ F [ a , b ] ϕ , if ϕ holds for some t ′ ∈ [ t + a , t + b ]. ◮ ϕ 1 U ϕ 2 , if ϕ 2 holds at some t ′ ≥ t , and ϕ 1 holds on [ t , t ′ ].

  6. Parameterized STL Semantics for Parametric Identification ϕ ::= x ≤ c | x ≥ c | x ≤ p | x ≥ p | F [ a , b ] ϕ | ϕ 1 U ϕ 2 | true | false | ¬ ϕ | ϕ 1 ∨ ϕ 2 | ϕ 1 ∧ ϕ 2 | For every time point t , we want to find the validity domain – for which parameter values the formula evaluates to true . ◮ x ≤ p : p ≥ x ( t ). ◮ F [ a , b ] ϕ : union of the validity domains on [ t + a , t + b ]. ◮ ϕ 1 U ϕ 2 : see paper. Single polarity – we want that a given parameter appears only in ≤ or only in ≥ expressions. Every validity domain is upward/downward-closed set of rectangles. There is a finite number of tightest parameter combinations.

  7. What PSTL Can Do? Motivation 1. Find system parameters from system traces. S. Jha et al., RV 2017 – extracting parameters from car sensor traces. For example, ◮ G ( x ≤ p 1 ∧ x ≥ p 2 ) – finds the range of x – between min p 1 and max p 2 . ◮ F ( x ≤ p 1 ∧ x ≥ p 2 ) – enumerates the possible values of x . The domain has the form ( p 1 ≥ x 1 ∧ p 2 ≤ x 1 ) ∨ ( p 1 ≥ x 1 ∧ p 2 ≤ x 1 ) ∨ · · · 2. Evaluate formulas with universal/existential quantifiers. Not this paper, see K. Havelund et al., FMCAD 2017.

  8. Example Extract high and low thresholds 2 x 1 0 0 5 10 15 20 25 30 Formula: G F [0 , t edge + t stab ] (( G [0 , t stab ] x ≤ p 1 ) ∨ ( G [0 , t stab ] x ≥ p 2 )) Validity domain at time 0: ( p 1 ≥ 2) ∨ ( p 1 ≥ 0 ∧ p 2 ≤ 2) ∨ ( p 2 ≤ 0) p 1 0 2 − 2 − p 2

  9. Previous Approaches E. Asarin, A. Donz´ e, O. Maler, D. Nickovic, RV 2011 B. Hoxha, A. Dokhanchi, G. Fainekos, STTT 2017 ◮ Allow time parameters. ◮ Search in parameter space (single polarity helps). ◮ Quantifier elimination in logical encoding.

  10. Our Approach Setting ◮ Piecewise-constant approximation. ◮ Single polarity. ◮ No time parameters. ◮ The validity signal (validity domain over time) is piecewise-constant. ◮ A single validity domain is an upward-closed set of boxes, representable as a set of points. Compute validity signals directly as maps from time segments to sets of boxes. Bottom-up over the formula structure: ◮ x ≤ p : directly, see next slide. ◮ F [ a , b ] ϕ : running union of validity signal of ϕ over the window [ t + a , t + b ]. ◮ ϕ 1 U ϕ 2 : see paper.

  11. Atomic Comparison x ≤ p 4 x 3 2 1 0 1 3 5 7 9 11 13 15 17 19 p ≥ 3 p ≥ 2 p ≥ 4 p ≥ 3 p ≥ 0 0 3 6 9 17 20

  12. Eventually p ≥ 3 p ≥ 2 p ≥ 4 p ≥ 3 p ≥ 0 F [1 , 8] x ≤ p 0 3 6 9 17 20 p ≥ 3 0 2 p ≥ 2 0 5 p ≥ 4 0 8 p ≥ 3 1 16 p ≥ 0 9 19 p ≥ 2 p ≥ 3 p ≥ 0 ∅ 0 5 9 19 20

  13. Eventually F [1 , 8] x ≤ p ◮ We adapt an algorithm by D. Lemire; originally linear in the length of the input. ◮ Fast in 1 dimension (1 parameter). ◮ Often reasonably fast in multiple dimensions; linear in the length of the input for a given formula. ◮ Not linear in general.

  14. More Pessimistic Example F ( x ≤ p 1 ∧ x ≥ p 2 ) Start with x ≤ p 1 ∧ x ≥ p 2 4 x 3 2 1 0 1 3 5 7 9 11 13 15 17 19 p 1 On [0 , 3] the validity domain is p 1 ≥ 3 ∧ − p 2 ≥ − 3. (3 , − 3) − p 2

  15. More Pessimistic Example F ( x ≤ p 1 ∧ x ≥ p 2 ) Start with x ≤ p 1 ∧ x ≥ p 2 4 x 3 2 1 0 1 3 5 7 9 11 13 15 17 19 (3 , − 3) (2 , − 2) (4 , − 4) (3 , − 3) (0 , 0) 0 3 6 9 17 20

  16. More Pessimistic Example F ( x ≤ p 1 ∧ x ≥ p 2 ) (3 , − 3) (2 , − 2) (4 , − 4) (3 , − 3) (0 , 0) 0 3 6 9 17 20 (3 , − 3) 0 3 (2 , − 2) 0 3 (4 , − 4) 0 3 (3 , − 3) 0 3 (0 , 0) 0 3

  17. More Pessimistic Example F ( x ≤ p 1 ∧ x ≥ p 2 ) Validity domain at time 0 enumerates signal values. p 1 (0 , 0) (2 , − 2) (3 , − 3) − p 2 (4 , − 4)

  18. Evaluation ◮ Prototype implementation in OCaml. ◮ Synthetic signals and output of a simulink model. ◮ Focus on examples where the validity domains have small number of boxes. ◮ In most examples, handle signals with 1M samples under a minute. For simple formulas, under 10 seconds.

  19. Evaluation Length / time, s Formula Signal 10 5 10 6 0.36 3.9 w sincos ϕ 1 = G ( x ≤ p 1 ∧ x ≥ p 2) w square 0.36 3.75 ϕ 2 = G ( x ≥ p ∧ y ≥ p ) w sincos 0.28 3.4 ϕ 3 = G ( y ≥ p U x ≥ p ) w sincos 0.31 3.4 ϕ 4 = G ( x ≤ 6 → F [0 , 50] ( x ≥ 6 ∨ x ≤ p )) 0.12 1.4 w square ϕ 5 , 1 = F [0 , 5 K ] ( x ≥ p 1 ∨ G [0 , 250] y ≥ p 2 ) 0.41 4.4 w sincos ϕ 5 , 2 = F [0 , 50 K ] ( x ≥ p 1 ∨ G [0 , 250] y ≥ p 2 ) 0.4 4.3 w sincos 4 44 ϕ 6 , 1 = G [0 , 5 K ] F [0 , 250] (( G [0 , 200] x ≤ p 1 ) ∨ ( G [0 , 200] x ≥ p 2 )) w square 0.75 8 2.5 42 w sincos ϕ 6 , 2 = G [0 , 50 K ] F [0 , 250] (( G [0 , 200] x ≤ p 1 ) ∨ ( G [0 , 200] x ≥ p 2 )) w square 0.67 8.7 w sincos TO TO ϕ 6 , 3 = G [0 , 50 K ] F [0 , 125] (( G [0 , 200] x ≤ p 1 ) ∨ ( G [0 , 200] x ≥ p 2 )) 0.66 8.1 w square ϕ 7 = G F [0 , 45] G [0 , 30] ( x cmd − resp ≤ p 1 ∧ x resp − cmd ≤ p 2 ) 0.56 6 w pitch

  20. Future Work ◮ Optimized Pareto set implementation. ◮ Large sets of points. ◮ Operations: union and intersection or complement. ◮ Sorted arrays in 2 dimensions, trees in 3 or more dimensions. ◮ Time parameters ◮ Real time is not piecewise-constant; need more than just boxes. ◮ Need fast set operations.

  21. Future Work ◮ Optimized Pareto set implementation. ◮ Large sets of points. ◮ Operations: union and intersection or complement. ◮ Sorted arrays in 2 dimensions, trees in 3 or more dimensions. ◮ Time parameters ◮ Real time is not piecewise-constant; need more than just boxes. ◮ Need fast set operations. Thanks

Recommend


More recommend