efficient implementation of multirate time integration
play

Efficient implementation of multirate time integration schemes - PowerPoint PPT Presentation

Efficient implementation of multirate time integration schemes Martin Schlegel Leibniz Institute for Tropospheric Research, Leipzig and Martin Luther University Halle-Wittenberg April 27, 2010 M. Schlegel (IfT, MLU) Multirate schemes April


  1. Efficient implementation of multirate time integration schemes Martin Schlegel Leibniz Institute for Tropospheric Research, Leipzig and Martin Luther University Halle-Wittenberg April 27, 2010 M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 1 / 19

  2. Contents 1 Motivation 2 Time integration 3 Spatial discretization 4 Implementation Issues Time integration Data Exchange Parallelization issues 5 Simulation Results Academic example Real Example 6 Conclusions and Outlook M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 2 / 19

  3. Motivation – MUSCAT Mu lti Sc ale A tmospheric T ransport model System for air pollution modeling Allows for complex simulations of atmospheric chemistry Online coupling to weather model possible Employs local refinement techniques Implementation basis: Written in Fortran 90/95 Communication via MPI Balancing via Metis/Parmetis M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 3 / 19

  4. Motivation – MUSCAT (cont.) Local refinement M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 4 / 19

  5. 1 Motivation 2 Time integration 3 Spatial discretization 4 Implementation Issues Time integration Data Exchange Parallelization issues 5 Simulation Results Academic example Real Example 6 Conclusions and Outlook M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 5 / 19

  6. Splitting of the RHS System to solve: ∂w ∂t = G ( w ) + F ( w ) � �� � nonstiff w 1 = w ( t n ) i − 1 � r i = ( a ij − a i − 1 ,j ) G ( w j ) j =1 v i ( c i − 1 ∆ t ) = w i − 1 ∂v i 1 = r i + F ( v i ) , τ ∈ [ c i − 1 ∆ t, c i ∆ t ] , i = 2 , ..., s + 1 ∂τ c i − c i − 1 = v i ( c i ∆ t ) w i w ( t n + ∆ t ) = w s +1 M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 6 / 19

  7. Splitting of the RHS w 1 = w ( t n ) i − 1 � = ( a ij − a i − 1 ,j ) G ( w j ) r i j =1 v i ( c i − 1 ∆ t ) = w i − 1 1 ∂v i = r i + F ( v i ) , τ ∈ [ c i − 1 ∆ t, c i ∆ t ] , i = 2 , ..., s + 1 ∂τ c i − c i − 1 w i = v i ( c i ∆ t ) w ( t n + ∆ t ) = w s +1 M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 7 / 19

  8. Decomposition by fluxes Splitting of the advection operator Idea: ◮ Domain is organized in blocks ◮ Each block computes the fluxes leaving its cells Necessary for parallelization Easier local refinement Problem: Block boundaries needed for computation Solution: Halo cells M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 8 / 19

  9. Flux splitting of the advection operator M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 9 / 19

  10. Flux splitting of the advection operator M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 9 / 19

  11. Flux splitting of the advection operator M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 9 / 19

  12. Mathematical properties R ecursive F lux S plitting M ulti r ate scheme (RFSMR) Generic scheme Mass preservation Up to 3rd order of convergence (w.r.t. time step) Internal consistency M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 10 / 19

  13. 1 Motivation 2 Time integration 3 Spatial discretization 4 Implementation Issues Time integration Data Exchange Parallelization issues 5 Simulation Results Academic example Real Example 6 Conclusions and Outlook M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 11 / 19

  14. Time integration Splitting approach suitable for recursive implementation Advantages: ◮ Only little memory overhead ◮ Arbitrary number of temporal refinement levels M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 12 / 19

  15. Algorithm for all stages i = 2 , ..., s + 1 do i − 1 � r i = ( a ij − a i − 1 ,j ) G ( w j ) compute local adv. fluxes j =1 exchange fluxes add received fluxes if c i > c i − 1 then v i ( c i − 1 ∆ t ) = w i − 1 compute system on next faster level ∂v i ∂τ = ... compute local diffusion-reaction else add local net fluxes end if exchange concentration end do M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 13 / 19

  16. 1 Motivation 2 Time integration 3 Spatial discretization 4 Implementation Issues Time integration Data Exchange Parallelization issues 5 Simulation Results Academic example Real Example 6 Conclusions and Outlook M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 14 / 19

  17. Program flow M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 15 / 19

  18. 1 Motivation 2 Time integration 3 Spatial discretization 4 Implementation Issues Time integration Data Exchange Parallelization issues 5 Simulation Results Academic example Real Example 6 Conclusions and Outlook M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 16 / 19

  19. M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 17 / 19

  20. 1 Motivation 2 Time integration 3 Spatial discretization 4 Implementation Issues Time integration Data Exchange Parallelization issues 5 Simulation Results Academic example Real Example 6 Conclusions and Outlook M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 18 / 19

  21. Conclusion M. Schlegel (IfT, MLU) Multirate schemes April 27, 2010 19 / 19

Recommend


More recommend