EDM measurements – with storage rings – Gerco Onderwater VSI, University of Groningen the Netherlands Solvay Workshop 'Beyond the Standard model with Neutrinos and Nuclear Physics' 2017
Outline ► Motivation ► EDM landscape ► Current & future limits ► Impact on & of experiments ► Summary & outlook Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Motivation Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
CP/T Violation Direct measurements K, B, D Cosmology (WMAP) ≠ Cosmological matter-antimatter asymmetry explainable with e.g. Sakharov conditions ► Baryon number violation ► C & CP violation δ CKM from K- and B-physics ► Thermal non-equilibrium d J d J Precision Searches T P ► Correlations in β-decay ► Electric dipole moments J d SM predicts EMDs beyond experimental reach ↳ EDMs are sensitive probe for new physics Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
EDM limits muon First non-zero EDM is a major discovery!!! Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
From theory to observable ... and back SM Picture from K. Jungmann Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Current EDM limits Limit [ e ∙ cm] 90%CL System 2.9x10 -26 n UCN 199 Hg 6.3x10 -30 vapor ↳ p 2.0x10 -25 1.2x10 -26 ↳ n Assuming all others zero ↳ e 6.0x10 -28 TlF 5.5x10 -23 molecular beam ↳ p 1.2x10 -22 ↳ e 6.7x10 -25 129 Xe 5.5x10 -27 maser (adj. χ² =1.35) 205 Tl 9.4x10 -25 atomic beam ↳ e 1.6x10 -27 YbF ??? molecular beam ↳ e 1.1x10 -27 1.8x10 -19 rest frame E-field μ D ~10 -15 Deuterium 1S-2S Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Why probe (light) nuclei? Nuclear EDMs from constituents and CPV NN-interaction d nucl = d n ⊕ d p ⊕ d NN n, p, 2 H , 3 H, 3 He, … , 129 Xe, ..., 199 Hg, ... Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
CPV one boson exchange Liu, Timmermans, et al. EDM operator long range ↓ one-pion exchange ► EDM in terms of P-odd/T-odd NN interaction: dominates d nucl = g NN [ a 0 g CP ] [][][] I = 0 a 1 g CP I = 1 a 2 g CP I = 2 ~14 nuclear structure ► Schiff moment in terms of P-odd/T-odd NN interaction: S nucl = g NN [ a 0 g CP I = 2 ] I = 0 a 1 g CP I = 1 a 2 g CP d atom = S S nucl e d e k T C T k S C S atomic structure diamagnetic Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Complementarity ► Coefficients for light nuclei & heavy atoms g π NN a 0 g π NN a 1 g π NN a 2 Liu & Timmermans 2004 Stetcu et al. 2008 n 0.14 0.00 -0.14 Ban et al. 2010 Ginges & Flambaum 2004 p -0.05 0.03 0.14 atoms nuclei Dzuba et al. 2002 D 0.09 0.23 0.00 Dzuba et al. 2009 3 He 0.34 0.32 0.38 129 Xe(*) 6x10 -5 6x10 -5 12x10 -5 (*) Use Schiff moments : d( 129 Xe) = +0.38x10 -17 (S/ e ∙fm 3 ) e ∙cm 199 Hg(*) -21x10 -5 11x10 -5 -22x10 -5 d( 199 Hg) = -2.6x10 -17 (S/ e ∙fm 3 ) e ∙cm d( 225 Ra) = -8.8x10 -17 (S/ e ∙fm 3 ) e ∙cm 225 Ra(*) -0.06 -0.12 0.11 p d He Xe Hg Ra n 152 75 93 108 89 134 p 86 60 46 110 56 a , ∡ pairwise b d 45 58 85 140 ~orthogonal! He 16 128 100 Xe 133 85 Hg 116 Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Looking (a little) deeper _ d/θ [ e ∙zm] ► QCD CPV : n 3780 _ g 0 ≈ 0.027 θ g 1 = g 2 = 0 p -1350 D 2430 3 He 9180 ► quark - chromo-EDMs: 129 Xe(*) 1.6 199 Hg(*) -5.7 ~ ~ ~ ~ g 0 ≈ 4 (d u +d d )g 1 ≈ 20(d u -d d ) g 2 = 0 225 Ra(*) -1620 ~ ~ d/d d [ e ∙ fm] d/d u [ e ∙ fm] n 0.56 0.56 p -0.80 0.40 Neutron ~orthogonal D -4.2 5.0 to ~everything Reason : a 1 = 0 3 He -5.0 7.8 Others : |a 0 | ~ |a 1 | 129 Xe(*) -1.0x10 -3 1.4x10 -3 199 Hg(*) -3.0x10 -3 1.4x10 -3 225 Ra(*) 2.2 -2.6 See refs. prev. page Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Limit on g 0,1,2 ►Obtain g 0,1,2 limits from best EDM limits: n , 129 Xe & 199 Hg ►Assuming no further constraints, g 's are of the order of 10 –10 (and of course strongly correlated) ►Resulting EDMs limits for p , D , 3 He of the order of 10 –23 e ·cm ►This is dominated by the “poor” Xe limit Enormous window to have impact already with precursor experiments; p, D & 3 He all good! Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Just measure any one! Rob Timmermans Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Generic EDM experiment 1. Prepare spin polarized ensemble 2. Interaction with electric field 3. Measure spin evolution Ω d 〈 J 〉 E ×〈 = B d J 〉 Example: dt d = 10 -26 e ∙ cm E = 100 kV/cm J = ½ Ω = 150 μ Hz ( Δ B ~ 5pT) Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Sensitivity General expression for the uncertainty of an EDM experiment N : number of particles in full experiment 1 P : initial polarization of sample d ∝ A : analyzing power of polarimeter P E N T A E : electric field strength in particle rest frame T : characteristic time of single measurement Work on: ► Strong source ► High polarization ► Efficient polarimeter ► High electric field strength ► Spin coherence, efficient storage Equally important: understand systematic effects Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Charged particles in an electric field Bare nuclei T ~ 2mL Charged particle accelerate and qE ~ ns escape due to electric field Atomic nuclei − 7 d D Charged constituent of a neutral d 2 H ~ 10 system rearrange themselves to balance forces Established techniques inadequate for charged particles Solution : store relativistic particles in magnetic field EDM interacts with motional electric field Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Fast charged particles in a magnetic field d ⃗ S d ⃗ p d × [ ⃗ B ] dt = ⃗ v ×⃗ v ×⃗ dt = q ⃗ B c m = ⃗ ⃗ v ×⃗ E B can be very large (GV/m) Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Spins in an electromagnetic field B a − m [ a B ] 2 − 1 E = e 1 v × v × E 2 magnetic moment anomaly EDM B=0, E r , 1/( γ² -1)=a E=0, B=B y electrostatic parasitic ω = √ a 2 +(ηβ) 2 / 4 B (1) (1) ⟨ω η ⟩=η E / 2 ω η = ^ ω× ^ (2) ^ (2) ^ E B =ηβ/ 2 a E r ≈aBcβγ² E z ≈Ecos(Ωt) resonance frozens spin ω =ηβ B / 2 (1) (1) ⟨ ω η ⟩=ηΔβ B / 4 ω× ^ ω η × ^ (2) ^ ⟨ ^ B = 1 (2) B ⟩= 1 Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Spins in an electromagnetic field B a − m [ a B ] 2 − 1 E = e 1 v × v × E 2 magnetic moment anomaly EDM S z electrostatic parasitic S y x1,000,000 S x resonance frozens spin ω η In all cases : EDM in S y , MDM in S x,z Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Frozen spin sensitivity = E v × B = a 1 E 2 a particle μ/μ N a ξγ² Additional requirements μ -8.891 0.001166 858 ► Polarizability n -1.913 -2.910 – ► Polarimetry p 2.793 1.793 1.56 ► Lifetime ► Intensity D 0.857 -0.143 -5.99 ► Competitive 3 H 2.979 7.918 1.13 3 He -2.128 -4.184 0.76 Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Experiments In Preparation Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Parasitic : muon g-2 @ FNAL FNAL E969: The New (g-2) Experiment: Measure the Muon Anomalous Magnetic Moment to 0.14 ppm Precision Design: ► p = 3.1GeV/ c ► B = 1.45T, ► R = 7m Estimated EDM Sensitivity around 10 –21 e∙cm two orders below current limit Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Ultra-cold muons @ J-PARC K. Ishida, NuFact'17 Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Recent achievements & activities Spiral Injection Scheme for η injection ≥ 80% (vs. 3.5%) NIMA 832, 51 (2016) High-Acceptance Muon Re-Acceleration Phys. Rev. Accel. Beams 19, 040101 (2016) J. Phys.: Conf. Ser. 874 012055 (2017) Muonium Production @ 20% of 10 6 /s Prog. Theor. Exp. Phys. 091C01 (2014) Progress in many essential areas Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Status K. Ishida, NuFact'17 Goal: 10 –21 e∙cm Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
JEDI : Jülich EDM Investigations Cooler-Synchrotron COSY @ FZJ Polarized Protons & Deuterons @ 0.3 – 3.7 GeV/ c Gerco Onderwater, VSI/University of Groningen Solvay Workshop, 29 November 2017
Recommend
More recommend