algorithms for cox rings
play

Algorithms for Cox rings Simon Keicher ICERM May 2018 Algorithms - PowerPoint PPT Presentation

Background Computational approach Compute Cox rings Compute Symmetries Algorithms for Cox rings Simon Keicher ICERM May 2018 Algorithms for Cox rings S. Keicher Background Computational approach Compute Cox rings Compute Symmetries Cox


  1. Background Computational approach Compute Cox rings Compute Symmetries Algorithms for Cox rings Simon Keicher ICERM May 2018 Algorithms for Cox rings S. Keicher

  2. Background Computational approach Compute Cox rings Compute Symmetries Cox rings The Cox ring of a normal projective variety X is the Cl ( X )-graded C -algebra � Cox ( X ) := Γ( X , O ( D )) . Cl ( X ) Algorithms for Cox rings S. Keicher

  3. Background Computational approach Compute Cox rings Compute Symmetries Cox rings The Cox ring of a normal projective variety X is the Cl ( X )-graded C -algebra � Cox ( X ) := Γ( X , O ( D )) . Cl ( X ) Example 1 For X = P 2 we have Cl ( P 2 ) = Z and Cox ( P 2 ) = C [ T 1 , T 2 , T 3 ] , deg( T i ) = 1 ∈ Z . Algorithms for Cox rings S. Keicher

  4. Background Computational approach Compute Cox rings Compute Symmetries Cox rings The Cox ring of a normal projective variety X is the Cl ( X )-graded C -algebra � Cox ( X ) := Γ( X , O ( D )) . Cl ( X ) Example 1 For X = P 2 we have Cl ( P 2 ) = Z and Cox ( P 2 ) = C [ T 1 , T 2 , T 3 ] , deg( T i ) = 1 ∈ Z . 2 For X = ToricVariety(Σ) then Cox ( X ) = C [ T ̺ ; ̺ ∈ rays(Σ)] , with deg( T ̺ ) = [ D ̺ ] ∈ Cl ( X ). Algorithms for Cox rings S. Keicher

  5. Background Computational approach Compute Cox rings Compute Symmetries Cox rings The Cox ring of a normal projective variety X is the Cl ( X )-graded C -algebra � Cox ( X ) := Γ( X , O ( D )) . Cl ( X ) Example 1 For X = P 2 we have Cl ( P 2 ) = Z and Cox ( P 2 ) = C [ T 1 , T 2 , T 3 ] , deg( T i ) = 1 ∈ Z . 2 For X = ToricVariety(Σ) then Cox ( X ) = C [ T ̺ ; ̺ ∈ rays(Σ)] , with deg( T ̺ ) = [ D ̺ ] ∈ Cl ( X ). Algorithms for Cox rings S. Keicher

  6. Background Computational approach Compute Cox rings Compute Symmetries Cox rings The Cox ring of a normal projective variety X is the Cl ( X )-graded C -algebra � Cox ( X ) := Γ( X , O ( D )) . Cl ( X ) Example 1 For X = P 2 we have Cl ( P 2 ) = Z and Cox ( P 2 ) = C [ T 1 , T 2 , T 3 ] , deg( T i ) = 1 ∈ Z . 2 For X = ToricVariety(Σ) then Cox ( X ) = C [ T ̺ ; ̺ ∈ rays(Σ)] , with deg( T ̺ ) = [ D ̺ ] ∈ Cl ( X ). Features: significant invariant, Cl ( X )-factorial. Algorithms for Cox rings S. Keicher

  7. Background Computational approach Compute Cox rings Compute Symmetries Mori dream spaces We call X a Mori dream space (Hu/Keel, 2000) if Cl ( X ) and Cox ( X ) are finitely generated. Algorithms for Cox rings S. Keicher

  8. Background Computational approach Compute Cox rings Compute Symmetries Mori dream spaces We call X a Mori dream space (Hu/Keel, 2000) if Cl ( X ) and Cox ( X ) are finitely generated. Global coordinates: � C r ⊇ := ⊇ X Spec ( Cox ( X )) X / / H := Spec C [ Cl ( X )] X Algorithms for Cox rings S. Keicher

  9. Background Computational approach Compute Cox rings Compute Symmetries Mori dream spaces We call X a Mori dream space (Hu/Keel, 2000) if Cl ( X ) and Cox ( X ) are finitely generated. Global coordinates: � C r ⊇ := ⊇ X Spec ( Cox ( X )) X / / H := Spec C [ Cl ( X )] X Example The class of Mori dream spaces comprises • toric varieties, spherical varieties, • rational complexity-one T -varieties, • smooth Fano varieties, • general hypersurfaces in P n , n ≥ 4. Algorithms for Cox rings S. Keicher

  10. Background Computational approach Compute Cox rings Compute Symmetries Mori dream spaces: combinatorial description Explicit description (Berchtold/Hausen)   � Mori dream � factorially K -graded   ← → algebras R with a spaces   vector in Mov ( R ) �→ ( Cox ( X ) , Cl ( X ) , ample class) X Algorithms for Cox rings S. Keicher

  11. Background Computational approach Compute Cox rings Compute Symmetries Mori dream spaces: combinatorial description Explicit description (Berchtold/Hausen)   � Mori dream � factorially K -graded   ← → algebras R with a spaces   vector in Mov ( R ) �→ ( Cox ( X ) , Cl ( X ) , ample class) X ( Spec R ) ss ( w ) / / Spec C [ K ] ← � ( R , K , w ) Remark: • the vector w fixes a GIT-cone , • this allows a treatment of Mori dream spaces in terms of commutative algebra and polyhedral combinatorics. Algorithms for Cox rings S. Keicher

  12. Background Computational approach Compute Cox rings Compute Symmetries Mori dream spaces: combinatorics Example (toric varieties) Fix a f.g. abelian group K and a K -grading on R := C [ T 1 , . . . , T r ]. Algorithms for Cox rings S. Keicher

  13. Background Computational approach Compute Cox rings Compute Symmetries Mori dream spaces: combinatorics Example (toric varieties) Fix a f.g. abelian group K and a K -grading on R := C [ T 1 , . . . , T r ]. Each � r ( R , K , w ) , w ∈ Mov ( R ) = cone (deg T j ; j � = i ) i =1 gives a toric variety X with Cox ( X ) = R and Cl ( X ) = K . Algorithms for Cox rings S. Keicher

  14. Background Computational approach Compute Cox rings Compute Symmetries Mori dream spaces: combinatorics Example (toric varieties) Fix a f.g. abelian group K and a K -grading on R := C [ T 1 , . . . , T r ]. Each � r ( R , K , w ) , w ∈ Mov ( R ) = cone (deg T j ; j � = i ) i =1 gives a toric variety X with Cox ( X ) = R and Cl ( X ) = K . Fan Σ X of X : Q Q r 0 0 K M Q deg( T i ) ← � e i Algorithms for Cox rings S. Keicher

  15. Background Computational approach Compute Cox rings Compute Symmetries Mori dream spaces: combinatorics Example (toric varieties) Fix a f.g. abelian group K and a K -grading on R := C [ T 1 , . . . , T r ]. Each � r ( R , K , w ) , w ∈ Mov ( R ) = cone (deg T j ; j � = i ) i =1 gives a toric variety X with Cox ( X ) = R and Cl ( X ) = K . Fan Σ X of X : Q Q r 0 0 K M Q deg( T i ) ← � e i Then Σ X is the normalfan over the fiber polytope ≥ 0 − w ′ ⊆ ker ( Q ) ∼ B w := Q − 1 ( w ) ∩ Q r = M Q . Algorithms for Cox rings S. Keicher

  16. Background Computational approach Compute Cox rings Compute Symmetries Mori Dream Spaces: computational approach Algorithms for Cox rings S. Keicher

  17. Background Computational approach Compute Cox rings Compute Symmetries Mori Dream Spaces: computer algebra approach Aim Let X be a Mori dream space. 1 Given ( Cox ( X ) , Cl ( X ) , w ), explore the geometry of X computationally. Algorithms for Cox rings S. Keicher

  18. Background Computational approach Compute Cox rings Compute Symmetries Mori Dream Spaces: computer algebra approach Aim Let X be a Mori dream space. 1 Given ( Cox ( X ) , Cl ( X ) , w ), explore the geometry of X computationally. 2 Given X , compute its defining data ( Cox ( X ) , Cl ( X ) , w ). Algorithms for Cox rings S. Keicher

  19. Background Computational approach Compute Cox rings Compute Symmetries MDSpackage Basic algorithms for Mori dream spaces implemented in MDSpackage (for Maple , with Hausen, LMS J. Comput. Math. ). Algorithms for Cox rings S. Keicher

  20. Background Computational approach Compute Cox rings Compute Symmetries MDSpackage : basic algorithms For general Mori dream spaces: • Basics on K -graded algebras, • Picard group, cones of divisor classes, • canonical toric ambient variety, • singularities, • test for being factorial, . . . Algorithms for Cox rings S. Keicher

  21. Background Computational approach Compute Cox rings Compute Symmetries MDSpackage : basic algorithms For general Mori dream spaces: • Basics on K -graded algebras, • Picard group, cones of divisor classes, • canonical toric ambient variety, • singularities, • test for being factorial, . . . For complete intersections: • intersection numbers, • test for being Fano, Gorenstein, . . . Algorithms for Cox rings S. Keicher

  22. Background Computational approach Compute Cox rings Compute Symmetries MDSpackage : basic algorithms For general Mori dream spaces: • Basics on K -graded algebras, • Picard group, cones of divisor classes, • canonical toric ambient variety, • singularities, • test for being factorial, . . . For complete intersections: • intersection numbers, • test for being Fano, Gorenstein, . . . For complexity-one T -varieties: • roots of the automorphism group, • test for being ( ε -log) terminal, . . . Algorithms for Cox rings S. Keicher

  23. Background Computational approach Compute Cox rings Compute Symmetries MDSpackage : examples Example (Data fixing a Mori dream space) 1 Define the Cox ring Cox ( X ) := C [ T 1 , . . . , T 8 ] / � T 1 T 6 + T 2 T 5 + T 3 T 4 + T 7 T 8 � , Algorithms for Cox rings S. Keicher

  24. Background Computational approach Compute Cox rings Compute Symmetries MDSpackage : examples Example (Data fixing a Mori dream space) 1 Define the Cox ring Cox ( X ) := C [ T 1 , . . . , T 8 ] / � T 1 T 6 + T 2 T 5 + T 3 T 4 + T 7 T 8 � , Algorithms for Cox rings S. Keicher

  25. Background Computational approach Compute Cox rings Compute Symmetries MDSpackage : examples Example (Data fixing a Mori dream space) 1 Define the Cox ring Cox ( X ) := C [ T 1 , . . . , T 8 ] / � T 1 T 6 + T 2 T 5 + T 3 T 4 + T 7 T 8 � , 2 the class group Cl ( X ) := Z 3 ⊕ Z / 2 Z and the free part of an ample class w := (0 , 0 , 1) ∈ Q 3 . Algorithms for Cox rings S. Keicher

Recommend


More recommend