edge detection in jpeg2000 wavelet domain analysis on
play

Edge detection in JPEG2000 Wavelet Domain - Analysis on Sigmoid - PowerPoint PPT Presentation

Edge detection in JPEG2000 Wavelet Domain - Analysis on Sigmoid Function Edge Model Vytenis PUNYS, Ramunas MAKNICKAS Dept. Multimedia Engineering Kaunas University of Technology, LITHUANIA MIE 2011, Oslo August 31, 2011 Whole Slide


  1. Edge detection in JPEG2000 Wavelet Domain - Analysis on Sigmoid Function Edge Model Vytenis PUNYS, Ramunas MAKNICKAS Dept. Multimedia Engineering Kaunas University of Technology, LITHUANIA MIE ’ 2011, Oslo August 31, 2011

  2. Whole Slide Imaging – dimensions & amount of data ¡ Typical: 20mm x 15mm @ .5 µ pp ( “ 20X ” ) = 40,000 x 30,000 pixels = 1.2Gp = 3.6GB (uncompressed) 20mm x 15mm @ .25 µ pp ( “ 40X ” ) = 80,000 x 60,000 pixels = 4.8Gp = 14.4GB (uncompressed) ¡ Extreme: 50mm x 25mm @ .1 µ pp ( “ 100X ” ) = 500,000 x 250,000 pixels = 125Gp = 375GB (uncompressed) l x 10 Z-planes => 3.75TB V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  3. Automatical Scanning Systems ¡ 384 glass slides, 2-4 min./slide (20x-40x), 1 z-plane ¡ 20x: 69.1 Gbyte / 12.8 hours 40x: 276.5 Gbyte / 25.6 hours @ JPEG2000 compression factor 1:20 V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  4. Hierarchical Image Data Organisation Image Size( Image1 ) Size( Image2 ) 0.56 GByte 23.8 GByte Label 539 x 507 Macro 1280 x 446 Thumbnail 1024 x 641 839 x 768 Intermediate 1 3247 x 2033 2 912 x 2 665 Intermediate 2 6 494 x 4 066 5 824 x 5 331 Hi-Res1 (20x/10x) 25 976 x 16 264 23 298 x 21 324 Hi-Res2 (40x) 93 194 x 85 298 V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  5. Research objective: quantification without image decompression ¡ What could be detected in compressed image data structures (wavelet domain) using the bi- orthogonal wavelets defined in the JPEG2000 standard for lossless (CDF 5/3) and lossy (CDF 9/7) compression. ¡ The parameters of detected objects (e.g. edges, their height and width) might be used for automatic cell quantification. V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  6. Example of Microscopy Image (part of it) V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  7. Wavelet coefficients (mapped to greyscale) V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  8. Wavelet coefficients stored in JPEG 2000 format V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  9. Wavelet coefficients “carry” information about signal magnitude and location … Issues: ¡ Wavelets: compression / detection? ¡ DWT – de-correlation of information l DWT coefficients “shifted” in space l DWT coefficients (value) depend on edge magnitude and position ¡ Detection of areas or edges? ¡ JPEG 2000 process > DWT: l Dyadic decomposition l Quantification of coefficients V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  10. b f ( x , a , b ) , c 2 ln( 2 3 ), a 0 , Edge model – = = − > cx 1 e a + a a sigmoid function f ' ' ' ( , a , b ) f ' ' ' ( , a , b ) 0 . − = = 2 2 ¡ Edge height a ¡ Edge width b ¡ Edge position c (within the limits of decomposition) V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  11. Back from wavelet coefficients to signal height and width ¡ Method 1: calculates parameters a and b of all suitable edges, whose wavelet maximum coefficients at analysed scales are equal to given w . The result is the set of ranges [b 1 ,b 2 ] of width for every height a of an edge. ¡ Method 2 calculates detectable height intervals [a 1 ,a 2 ] at various widths b of an edge. V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  12. Modelling of edge detection M1: a=50 M2: a=150 V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  13. Number of “ detected ” edge heights V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  14. Results (1/2) ¡ Achieved results are encouraging to continue the research of edge detection in wavelet domain. ¡ Analysis showed different and unambiguous correspondence of edge parameter vectors to wavelet coefficients. ¡ Variability of detected edge width for any height does not exceed 0.5 pixel size for edges wider than 3 pixels. V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  15. Results (2/2) ¡ M1 (“height first”) is more suitable for lossy compressed images, and M2 (“width first”) – for lossless compressed ones. ¡ Naturally, detection results in lossless compressed images are better than in lossy images, except the case when height of an object exceeds 150 – then the M1 is more accurate for height detection in lossy compressed images. V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

  16. Thank you for your attention Any questions ? ? Vytenis . Punys @ KTU . LT V.Punys, R.Maknickas (KTU, LT) MIE ’ 2011, Oslo

Recommend


More recommend