e h
play

E - PowerPoint PPT Presentation

E H Batrice de Tilire University Paris-Dauphine work in progress with Cdric Boutillier (Sorbonne) & David


  1. E      H  Béatrice de Tilière University Paris-Dauphine work in progress with Cédric Boutillier (Sorbonne) & David Cimasoni (Genève) Les Diablerets, February 11, 2020

  2. O • Dimer model • Dimer model and Harnack curves • Minimal isoradial immersions • Elliptic dimer model • Results

  3. D :  ◮ Planar, bipartite graph G = ( V = B ∪ W , E ) . ◮ Dimer configuration M : subset of edges s.t. each vertex is incident to exactly one edge of M � M ( G ) . ◮ Positive weight function on edges: ν = ( ν e ) e ∈ E . ◮ Dimer Boltzmann measure ( G finite): � ν e e ∈ M ∀ M ∈ M ( G ) , P dimer ( M ) = Z dimer ( G , ν ) . where Z dimer ( G , ν ) is the dimer partition function.

  4. D :  ◮ Planar, bipartite graph G = ( V = B ∪ W , E ) . ◮ Dimer configuration M : subset of edges s.t. each vertex is incident to exactly one edge of M � M ( G ) . ◮ Positive weight function on edges: ν = ( ν e ) e ∈ E . ◮ Dimer Boltzmann measure ( G finite): � ν e e ∈ M ∀ M ∈ M ( G ) , P dimer ( M ) = Z dimer ( G , ν ) . where Z dimer ( G , ν ) is the dimer partition function.

  5. D : K  ◮ Kasteleyn matrix (Percus-Kuperberg version) · Edge wb � angle φ wb s.t. for every face w 1 , b 1 , . . . , w k , b k : k � ( φ w j b j − φ w j + 1 b j ) ≡ ( k − 1 ) π mod 2 π. j = 1 · K is the corresponding twisted adjacency matrix.  ν wb e i φ wb if w ∼ b   K w , b =   0 otherwise .  

  6. D :   ◮ Assume G finite. T ( [K’] [K’]) Z dimer ( G , ν ) = | det( K ) | . T ( K’) Let E = { e 1 = w 1 b 1 , . . . , e n = w n b n } be a subset of edges of G , then: � n � � � � det( K − 1 ) E P dimer ( e 1 , . . . , e n ) = � K w j , b j � � , � � � j = 1 where ( K − 1 ) E is the sub-matrix of K − 1 whose rows/columns are indexed by black/white vertices of E . ◮ G infinite: Boltzmann measure � Gibbs measure · Periodic case [Cohn-Kenyon-Propp’01], [Ke.-Ok.-Sh.’06] · Non-periodic [dT’07], [Boutillier-dT’10], [B-dT-Raschel’19]

  7. D :   ◮ Assume G is bipartite, infinite, Z 2 -periodic. ◮ Exhaustion of G by toroidal graphs: ( G n ) = ( G / n Z 2 ) .

  8. D :   ◮ Fundamental domain: G 1 ◮ Let K 1 be the Kasteleyn matrix of fundamental domain G 1 . ◮ Multiply edge-weights by z , z − 1 , w , w − 1 → K 1 ( z , w ) . ◮ The characteristic polynomial is: P ( z , w ) = det K 1 ( z , w ) . Example: weight function ν ≡ 1, P ( z , w ) = 5 − z − 1 z − w − 1 w .

  9. D :   ◮ Fundamental domain: G 1 z − 1 z w − 1 w ◮ Let K 1 be the Kasteleyn matrix of fundamental domain G 1 . ◮ Multiply edge-weights by z , z − 1 , w , w − 1 → K 1 ( z , w ) . ◮ The characteristic polynomial is: P ( z , w ) = det K 1 ( z , w ) . Example: weight function ν ≡ 1, P ( z , w ) = 5 − z − 1 z − w − 1 w .

  10. D :   ◮ The spectral curve: C = { ( z , w ) ∈ ( C ∗ ) 2 : P ( z , w ) = 0 } . ◮ Amoeba: image of C through the map ( z , w ) �→ (log | z | , log | w | ) . Amoeba of the square-octagon graph

  11. D   H  T ◮ Spectral curves of bipartite dimers [Ke.-Ok.-Sh.’06] [Ke.-Ok.’06] ←→ Harnack curves with points on ovals. ◮ Spectral curves of isoradial, bipartite dimer models with critical [Kenyon-Okounkov’06] weights [Kenyon ’02] ←→ Harnack curves of genus 0. [Goncharov-Kenyon ’13] ◮ Spectral curves of minimal, bipartite dimers ←→ Harnack curves with points on ovals. Explicit ( −→ ) map ◮ [Fock’15] Explicit ( ←− ) map for all algebraic curves. (no check on positivity).

  12. D   H     T ( [B-T-C’+]) Spectral curves of minimal, bipartite dimer models with Fock’s weights ←→ Harnack curves of genus 1 with a point on the oval.

  13. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  14. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  15. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  16. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  17. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  18. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  19. I  ◮ An isoradial embedding of an infinite, planar graph G is an embedding such that all of its faces are inscribed in a circle of radius 1, and such that the center of the circles are in the interior of the faces [Duffin] [Mercat] [Kenyon] . ◮ Equivalent to: the quad-graph G ⋄ is embedded so that of all its faces are rhombi. T ( K-S’) An infinite planar graph G has an isoradial embedding iff

  20. I 

  21. I 

  22. I 

  23. M  ◮ If the graph G is bipartite, train-tracks are naturally oriented (white vertex of the left, black on the right).

  24. M  ◮ If the graph G is bipartite, train-tracks are naturally oriented (white vertex of the left, black on the right). ◮ A bipartite, planar graph G is minimal if [Thurston’04] [Gulotta’08] [Ishii-Ueda’11] [Goncharov-Kenyon’13]

  25. I    ◮ A minimal isoradial immersion of an infinite planar graph G is an immersion of the quadgraph G ⋄ such that: · all of the faces are rhombi (flat or reversed) · the immersion is flat: the sum of the rhombus angles around every vertex and every face is equal to 2 π . P ( B-T-C ’) The flatness condition is equivalent to : · around every vertex there is at most one reversed rhombus · around every face, the cyclic order of the vertices differ by at most disjoint transpositions in the embedding and in the immersion. T ( B-T-C ’) An infinite, planar, bipartite graph G has a minimal isoradial immersion iff it is minimal.

  26. D   F’  ◮ Tool 1. Jacobi’s (first) theta function. · Parameter q = e i πτ , ℑ ( τ ) > 0, Λ ( q ) = π Z + πτ Z , T ( q ) = C / Λ . ∞ � ( − 1 ) n q n ( n + 1 ) sin( 2 n + 1 ) z . 1 θ ( z ) = 2 q 4 n = 0 · Allows to represent Λ ( q ) -periodic meromorphic functions. 1 4 sin( z ) as q → 0. · θ ( z ) ∼ 2 q ◮ Tool 2. Isoradially immersed, bipartite, minimal graph G . · each train-track T is assigned direction e i 2 α T . · each edge e = wb is assigned train-track directions e 2 i α , e 2 i β , and a half-angle β − α ∈ [ 0 , π ) .

  27. D   F’   ◮ Tool 3. Discrete Abel map [Fock] D ∈ ( R /π Z ) V ( G ⋄ ) · Fix face f 0 and set D ( f 0 ) = 0, · ◦ : degree -1, • : degree 1, faces: degree 0, · when crossing T : increase/decrease D by α T accordingly. f ′ D ( f ) + β − α e 2 i α β − α w b D ( f ) + β D ( f ) − α e 2 i β D ( f ) f ◮ Point t ∈ π 2 τ + R . ◮ Fock’s adjacency matrix θ ( β − α )  if w ∼ b   K ( t )  θ ( t + D ( b ) − β ) θ ( t + D ( w ) − α ) w , b =    0 otherwise .  

  28. D   F’   L ( [B-T-C’+]) Under the above assumptions, the matrix K ( t ) is a Kasteleyn matrix for a dimer model (positive weights) on G .

Recommend


More recommend