driven granular fluids collective effects
play

Driven Granular Fluids: Collective Effects W. Till Kranz MPI fr - PowerPoint PPT Presentation

Driven Granular Fluids: Collective Effects W. Till Kranz MPI fr Dynamik und Selbstorganisation, Gttingen Institut fr Theoretische Physik, Universitt Gttingen Physics of Granular Flows, Ky oto 2013 Acknowledgment Annette Zippelius


  1. Driven Granular Fluids: Collective Effects W. Till Kranz MPI für Dynamik und Selbstorganisation, Göttingen Institut für Theoretische Physik, Universität Göttingen Physics of Granular Flows, Ky¯ oto 2013

  2. Acknowledgment Annette Zippelius ◮ Matthias Sperl ◮ Andrea Fiege ◮ Iraj Gholami ◮ Timo Aspelmeier ◮ W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  3. A Sandstorm for Experimental Physicists Abate & Durian, PRE 74 2006 ◮ Steel balls ( ∼ 7 mm ∅ ) on a sieve ◮ Driven by air flow ◮ Measurement of mean square displacement δ r 2 ( t ) = [ r ( t ) − r ( 0 )] 2 � � W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  4. Inelastic, Smooth, Hard Spheres: A Model for Granular Particles Hard Spheres completely characterized by ◮ Mass m ◮ Radius a ◮ Coefficient of restitution ǫ ∈ [ 0 , 1 ] Collision law v t v 12 v ′ n = − ǫ v n , v ′ t = v t v n Energy Loss on average per collision ∆ E ∝ 1 − ǫ 2 W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  5. A Sandstorm for Theoretical Physicists Random Force ξ i ( t ) , gaussian distributed ◮ Average � ξ i � = 0 ξ 2 ◮ Driving power P D = � � i Stationary State as a balance between driving & dissipation Event Driven Simulations 10 000 particles Bidisperse to avoid crystallization Coefficient of Restitution ǫ = 0 . 9 I. Gholami et al. PRE 84 2011 Area Fraction η = 0 . 1–0 . 81 W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  6. A Sandstorm for Theoretical Physicists Random Force ξ i ( t ) , gaussian distributed ◮ Average � ξ i � = 0 ξ 2 ◮ Driving power P D = � � i Stationary State as a balance between driving & dissipation Event Driven Simulations 10 000 particles Bidisperse to avoid crystallization Coefficient of Restitution ǫ = 0 . 9 I. Gholami et al. PRE 84 2011 Area Fraction η = 0 . 1–0 . 81 W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  7. Outline Static Structure & Momentum Conservation 1 Long-Time Tails 2 The Granular Glass Transition 1 3 1 See also the Lecture on Friday W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  8. Static Structure: A Surprise 2 3.0 ε = 1.0 ε = 0.7, single 2.5 structure factor S q 2.0 ◮ Strong increase for k → 0 1.5 ◮ Highly Correlated on large 1.0 Length Scales 0.5 ◮ Implies so called 0.0 Giant Number Fluctuations 0.0 π 0.5 π 1.0 π 1.5 π 2.0 π 2.5 π wave number qd ◮ Volume Fraction ϕ = 0 . 2 ◮ N = 50 × 400 000 2 Kranz, Fiege, Zippelius, in preparation W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  9. A Toy Model ∂ t h ( r , t ) = η ∇ 2 h ( r , t ) + ξ ( r , t ) ≃ � ˆ ξ ( − k )ˆ ξ ( k ) � � � ˆ h ( − k )ˆ Correlation Function C ( k ) = h ( k ) Grinstein et al. , PRL 64 1990 η k 2 � � ξ ( − k )ˆ ˆ Random Force � ξ ( r ) ξ ( r ′ ) � ∝ δ ( r − r ′ ) ⇒ ξ ( k ) = 1. � � ∝ η k 2 due to FDT ξ ( − k )ˆ ˆ Equilibrium ξ ( k ) Local Pairs � ξ ( r ) ξ ( r ′ ) � ∝ Θ( r − r ′ − ℓ ) ⇒ � � ξ ( − k )ˆ ˆ ∝ ℓ 2 k 2 . ξ ( k ) W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  10. A Toy Model ∂ t h ( r , t ) = η ∇ 2 h ( r , t ) + ξ ( r , t ) ≃ � ˆ ξ ( − k )ˆ ξ ( k ) � � � ˆ h ( − k )ˆ Correlation Function C ( k ) = h ( k ) Grinstein et al. , PRL 64 1990 η k 2 � � ξ ( − k )ˆ ˆ Random Force � ξ ( r ) ξ ( r ′ ) � ∝ δ ( r − r ′ ) ⇒ ξ ( k ) = 1. � � ∝ η k 2 due to FDT ξ ( − k )ˆ ˆ Equilibrium ξ ( k ) Local Pairs � ξ ( r ) ξ ( r ′ ) � ∝ Θ( r − r ′ − ℓ ) ⇒ � � ξ ( − k )ˆ ˆ ∝ ℓ 2 k 2 . ξ ( k ) W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  11. A Toy Model ∂ t h ( r , t ) = η ∇ 2 h ( r , t ) + ξ ( r , t ) ≃ � ˆ ξ ( − k )ˆ ξ ( k ) � � � ˆ h ( − k )ˆ Correlation Function C ( k ) = h ( k ) Grinstein et al. , PRL 64 1990 η k 2 � � ξ ( − k )ˆ ˆ Random Force � ξ ( r ) ξ ( r ′ ) � ∝ δ ( r − r ′ ) ⇒ ξ ( k ) = 1. � � ∝ η k 2 due to FDT ξ ( − k )ˆ ˆ Equilibrium ξ ( k ) Local Pairs � ξ ( r ) ξ ( r ′ ) � ∝ Θ( r − r ′ − ℓ ) ⇒ � � ξ ( − k )ˆ ˆ ∝ ℓ 2 k 2 . ξ ( k ) W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  12. A Toy Model ∂ t h ( r , t ) = η ∇ 2 h ( r , t ) + ξ ( r , t ) ≃ � ˆ ξ ( − k )ˆ ξ ( k ) � � � ˆ h ( − k )ˆ Correlation Function C ( k ) = h ( k ) Grinstein et al. , PRL 64 1990 η k 2 � � ξ ( − k )ˆ ˆ Random Force � ξ ( r ) ξ ( r ′ ) � ∝ δ ( r − r ′ ) ⇒ ξ ( k ) = 1. � � ∝ η k 2 due to FDT ξ ( − k )ˆ ˆ Equilibrium ξ ( k ) Local Pairs � ξ ( r ) ξ ( r ′ ) � ∝ Θ( r − r ′ − ℓ ) ⇒ � � ξ ( − k )ˆ ˆ ∝ ℓ 2 k 2 . ξ ( k ) W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  13. Divergence under Control 2.0 ε = 1.0 3.0 ε = 1.0 ε = 0.9 ε = 0.7, single ε = 0.8 2.5 ε = 0.7, paired ε = 0.7 structure factor S q 1.5 structure factor S q 2.0 1.0 1.5 1.0 0.5 0.5 0.0 0.0 0.0 π 0.5 π 1.0 π 1.5 π 2.0 π 2.5 π 3.0 π 0.0 π 0.5 π 1.0 π 1.5 π 2.0 π 2.5 π wave number qd wave number qd ◮ Volume Fraction ϕ = 0 . 4 ◮ Volume Fraction ϕ = 0 . 2 W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  14. Insight can be used for Measurements 1.00 ε =0.9 ε =0.8 0.98 ε =0.7 shear viscosity η 0.96 ratio η int / η 10 0.94 0.92 ε =0.9 0.90 ε =0.8 ε =0.7 1 0.88 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 volume fraction ϕ volume fraction ϕ W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  15. Long-Time Tails W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  16. The Velocity Autocorrelation Function 10 0 ◮ ψ ( t ) = � v s ( 0 ) | v s ( t ) � 10 -1 Long-Time Tails ψ ( t ) ∝ t − α | ψ (t)| 10 -2 (instead of exponential decay) ◮ In 3D elastic & inelastic hard spheres 10 -3 t -3/2 have α = 3 / 2 10 -2 10 -1 10 0 10 1 t W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  17. Equation of Motion � t ∂ t ψ ( t ) + ω E ψ ( t ) + d τ M ( t − τ ) ψ ( τ ) = 0 0 Collision Frequency ω E Memory Kernel M ( t ) Incoherent Scattering Function φ s ( k , t ) contains more information about the tagged particle W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  18. Mode-Coupling Approximation 3 ◮ Consider coupling of tagged particle to Collective Density Modes φ ( k , t ) Longitudinal Current Modes φ L ( k , t ) Transverse Current Modes φ T ( k , t ) ◮ Transverse Mode yields slowest decay (in 3D) � ∞ 2 ( k ) φ T ( k , t ) φ s ( k , t ) M ( t → ∞ ) = M T ( t → ∞ ) ∝ ( 1 + ε ) 2 dkj ′′ 0 0 and indeed ψ ( t → ∞ ) ∝ t − 3 / 2 ◮ Situation in 2D is very subtle 3 Kranz, Zippelius, in preparation W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  19. Mode-Coupling Approximation 3 ◮ Consider coupling of tagged particle to Collective Density Modes φ ( k , t ) Longitudinal Current Modes φ L ( k , t ) Transverse Current Modes φ T ( k , t ) ◮ Transverse Mode yields slowest decay (in 3D) � ∞ 2 ( k ) φ T ( k , t ) φ s ( k , t ) M ( t → ∞ ) = M T ( t → ∞ ) ∝ ( 1 + ε ) 2 dkj ′′ 0 0 and indeed ψ ( t → ∞ ) ∝ t − 3 / 2 ◮ Situation in 2D is very subtle 3 Kranz, Zippelius, in preparation W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  20. The Glass Transition W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  21. The Glass Transition Amorphous Solid from either Supercooled Melt 1 Supersaturated Suspension 2 Dense Granular Fluid? 3 ◮ No Static Order Parameter Debenedetti & Stillinger, Nature 2001 W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  22. Order Parameter: Plateau of the Scattering Function η ≪ η c φ q ( t ) � � Scattering Function φ ( q , t ) = ρ ∗ q ( τ ) ρ q ( τ + t ) log t η � η c independent of τ Density ρ ( r , t ) = � i δ ( r i ( t ) − r ) φ q ( t ) Order Parameter f q = φ ( q , t → ∞ ) ◮ Fluid: f q = 0 log t η ≥ η c ◮ Glass: f q > 0 φ q ( t ) log t W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  23. Equation of Motion 4 � t ( ∂ 2 t + q 2 v 2 q ) φ ( q , t ) + d τ M ( q , t − τ ) ∂ τ φ ( q , τ ) = 0 0 Speed of Sound v q Memory Kernel M ( q , t ) 4 Kranz,Sperl,Zippelius, PRL 104 , 225701 (2010); PRE 87 , 022207 (2013) W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  24. Mode-Coupling Approximation � t ( ∂ 2 t + q 2 v 2 q ) φ ( q , t ) + d τ M ( q , t − τ ) ∂ τ φ ( q , τ ) = 0 0 ◮ Interpretation as interacting undamped sound waves � M ( q , t ) ≈ V qkp W qkp φ ( k , t ) φ ( p , t ) q = k + p Loss of Detailed Balance implies ◮ Rate of creation V qkp � = rate of annihilation W qkp ◮ Can still be calculated explicitly W T Kranz Göttingen Driven Granular Fluids: Collective Effects

  25. The Granular MCT Glass Transition 0.59 Glas Volumenbruch η c 0.57 ◮ Percus-Yevick static structure factor 0.55 ◮ Iterative Numerical Solution 0.53 Fluid ◮ Standard Discretization Parameters 0.51 0 0.2 0.4 0.6 0.8 1 Restitution ε W T Kranz Göttingen Driven Granular Fluids: Collective Effects

Recommend


More recommend