driven abc model under particle nonconserving dynamics
play

Driven ABC model under particle-nonconserving dynamics Or Cohen and - PowerPoint PPT Presentation

Driven ABC model under particle-nonconserving dynamics Or Cohen and David Mukamel International Seminar on Large Fluctuations in Non-Equilibrium Systems, Dresden, July 2011 Motivation Equilibrium systems with System driven out of Long-range


  1. Driven ABC model under particle-nonconserving dynamics Or Cohen and David Mukamel International Seminar on Large Fluctuations in Non-Equilibrium Systems, Dresden, July 2011

  2. Motivation Equilibrium systems with System driven out of Long-range interactions equilibrium GMm  v ( r ) T 2 r T 1 • • Much is known Much remains unknown • • Exhibit long-range correlations Exhibit long-range correlations • • Exhibit unique phenomena : Exhibit similar phenomena ? inequivalence of ensembles, negative specific heat in MC ensemble, slow relaxation, quasi-stationary states

  3. Outline 1. Long-range interactions Equilibrium Long-range 2. Inequivalence of ensembles 3. ABC model Driven Models 4. Inequivalence of ensembles 5. Conclusions

  4. Long-range interactions 1 r  v ( r )   d r Long range Short range σ >0 Energy 1   E   / d V E V scaling YES NO Additive S S Micro- C V <0 C V ≥ 0 C V <0 canonical E E E E E E 1 1 2 2 C V ≥ 0 C V ≥ 0 Canonical

  5. Inequivalence of ensembles Microcanonical Canonical T T disordered disordered ordered ordered C V <0 K K T K = interaction strength disordered 1 st order transition 2 nd order transition ordered inequivalence K

  6. Outline 1. Long-range interactions Equilibrium Long-range 2. Inequivalence of ensembles 3. ABC model Driven Models 4. Inequivalence of ensembles 5. Conclusions

  7. ABC model Ring of size L Dynamics : q AB BA 1 q BC CB 1 q CA AC 1 B C A q=1 ABBCACCBACABACB   L q<1 AAAAABBBBBCCCCC Evans, Kafri , Koduvely & Mukamel - Phys. Rev. Lett. 1998

  8. Currents & Detailed Balance 1. Equal densities N A =N B =N C Although q ≠ 1 detailed balance obeyed with respect with to  L L 1   k     2 H ({ X }) A B B C C A ~ L    i i i k i i k i i k L   i 1 k 1  H ({ X }) P ({ X }) q i i 2. Nonequal densities, e.g. N B ≠ N C No effective Hamiltonian

  9. Weak asymmetry  2 E ~ L   q exp( ) L S ~ L          E S E L / L f ( ) P E ( ) ( ) E q e e Clincy, Derrida & Evans - Phys. Rev. E 2003

  10. Weak asymmetry  2 E ~ L   q exp( ) L S ~ L          E S E L / L f ( ) P E ( ) ( ) E q e e 2 nd order phase transiton  c    2 3 10 . 9 at the critical temp. Clincy, Derrida & Evans - Phys. Rev. E 2003

  11. Outline 1. Long-range interactions Equilibrium Long-range 2. Inequivalence of ensembles 3. ABC model Driven Models 4. Inequivalence of ensembles 5. Conclusions

  12. ABC model + vacancies ‘Canonical’ ensemble : 1 0X X0 X=A,B,C 1 C A B 0 Lederhendler & Mukamel - Phys. Rev. Lett. 2010

  13. Nonconserving dynamics ‘Grand Canonical’ ensemble : 1 0X X0 X=A,B,C 1 pe -3 βμ ABC 000 p A B C 0 Fluctuating parameter : Conjugate field :    N N N  A B C r L Lederhendler & Mukamel - Phys. Rev. Lett. 2010

  14. Inequivalence of ensembles For N A =N B =N C : Conserving = Nonconserving = Canonical Grand canonical disordered disordered T= T= ordered ordered 1 st order transition 2 nd order transition tricritical point Lederhendler, Cohen & Mukamel - J. Stat. Mech: Theory Exp. 2010

  15. Nonequal densities Hydrodynamics equations : i    ( ) A A B A B   A i i i 1 i i 1 L Drift Diffusion Deposition Evaporation         d 1 d d               3 3 A A p e    A B C  0 A B C 2 dt L dx dx

  16. Nonequal densities Hydrodynamics equations : i    ( ) A A B A B   A i i i 1 i i 1 L Drift Diffusion Deposition Evaporation         d 1 d d               3 3 A A p e    A B C  0 A B C 2 dt L dx dx e - β /L AB BA 1 pe -3 βμ e - β /L 1 ABC 000 BC CB 0X X0 1 1 p e - β /L X= A,B,C CA AC 1

  17. Conserving steady-state Drift Diffusion       d 1 d   d               3 3 A A p e   A B C 0 A B C   2 dt L dx dx  p 0 Conserving model Steady-state profile      1 sn c x , d      * ( x , r ) r       a b sn c x , d        N N N  A B C r L Nonequal densities : Cohen & Mukamel - Preprint Equal densities : Ayyer et al. - J. Stat. Phys. 2009

  18. Nonconserving steady-state Drift Diffusion Deposition Evaporation       d 1 d   d               3 3 A A p e   A B C 0 A B C   2 dt L dx dx

  19. Nonconserving steady-state       d 1 d   d               3 3 A A p e   A B C 0 A B C   2 dt L dx dx Drift + Diffusion Deposition + Evaporation Nonconserving model     p ~ L , 2 with slow nonconserving dynamics Steady-state density Steady-state profile   r ? * ( x , r )   

  20. Dynamics of particle density       2 1 ~ L ~ L 2 1 2    ( x ) ( x ) ( x ) A B C r  r 1

  21. Dynamics of particle density       2 1 ~ L ~ L 2 1 2 After time τ 1 : r  r 1  * ( x , r )  1

  22. Dynamics of particle density       2 1 ~ L ~ L 2 1 2 After time τ 2 : r  r 2

  23. Dynamics of particle density       2 1 ~ L ~ L 2 1 2 After time τ 1 : r  r 2  * ( x , r )  2

  24. Dynamics of particle density       2 1 ~ L ~ L 2 1 2 After time τ 2 : r  r 3

  25. Dynamics of particle density       2 1 ~ L ~ L 2 1 2 After time τ 1 : r  r 3  * ( x , r )  3

  26. Large deviation function of r       2 1 ~ L ~ L 2 1 2 After time τ 1 : r  r 3  * ( x , r )  3  3 3 *     ( x , r ) R ( r r ) , R ( r r )  3 4 3 4 3 L L

  27. Large deviation function of r R  ( r ) V ( r ) R  ( r ) r r r r  min max = 1D - Random walk in a potential

  28. Large deviation function of r R  ( r ) V ( r ) R  ( r ) r r r r  min max = 1D - Random walk in a potential r R ( r ' )     P ( r ) exp[ LF ( r )]   R ( r ' ) r ' r  0   1     3 * 3   e dx ( ) 0 r Large pe -3 βμ     0 F ( r ) dr ' log ABC 000 deviation    1 function  p     * * *  r dx 0 A B C   0

  29. Inequivalence of ensembles r r For N A =N B ≠ N C :          r r , r 2 0 . 01 A B C 3 3 Conserving = Nonconserving = Canonical Grand canonical disordered disordered ordered ordered 1 st order transition 2 nd order transition tricritical point

  30. Locating 1 st order transition Large deviation function ‘Chemical potential’ in conserving system   r 1 1               * * * * 3   F ( r ) dr ' ( ( r ' )) ( r ' ) log dx ( ( ) )   A B C 0 3   r 0 0 Conserving Nonconserving 2 nd order trans. 1 st order trans. Maxwell’s μ μ Critical point construction Ordered phase  F ( r ) F ( r )   1 2 Homogenous phase r r r r 1 2

  31. Fast evaporation & deposition     p ~ L 2 Conserving Nonconserving   1   x  Flat vacancies ( x ) r Oscillatory vacancies ( ) const profile 0 0 profile d         No moving ( x ) 0 Moving ( x , ) ( x v )     solutions d solutions   2 3 2 3     c  c   1 2 2     r 36 2 2 2 2 r ( 1 k ) 36 ( 1 k ) 1 1 r 2 NESS is sensitive to the dynamics

  32. Results & Conclusions 1. Inequivalence of ensembles in the ABC model Open questions : Other similarities to system with LRI ? (dynamical features etc.) In other driven models ? 2. Dynamical definition of ensembles in driven models ? Conserving ABC model + slow nonconserving dynamics Obtain LDF of particle density Applies to other driven models

Recommend


More recommend