double beta decay
play

Double Beta Decay Junpei Shirai Research Center for Neutrino - PowerPoint PPT Presentation

Neutrino Physics Double Beta Decay Junpei Shirai Research Center for Neutrino Science, Tohoku University PANIC, Sep.1, 2017, Beijing, China Neutrinoless 0 Contents Introduction 0 and experimental challenges KamLAND-Zen


  1. Neutrino Physics Double Beta Decay Junpei Shirai Research Center for Neutrino Science, Tohoku University PANIC, Sep.1, 2017, Beijing, China Neutrinoless 0νββ

  2. Contents Introduction 0νββ and experimental challenges KamLAND-Zen Summary

  3. Neutrinos : Finite Masses, but still mysterious ! ν Absolute val. of m ν s << m q,ℓ m ν Origin of the mass. problem ! Fundamental , > 2 31 ν = ν ? or ν = ν ? 2 32 τ θ , 12 θ 13 θ , 23 Δm , 21 2 Δm , e ν μ ν e μ τ δ CP Δm < 0 ?

  4. Dirac Mass term Majorana Mass term ν = ν < 2 M N m ν Dirac Majorana ν N in the early Universe ! N: Important roles See-saw mechanism two mass eigenstates (M L /2)[(ψ c ) R ψ L +h.c.] + (M R /2)[(ψ c ) L ψ R +h.c.]. ν = ν − L m =M D (ψ R ψ L +h.c.) + = M q,ℓ < M q,ℓ

  5. Matter dominance world (Leptogenesis) Sakharov’s conditions Super-heavy Majorana ν ΔL=0 =>Δ(B-L)=0 =>ΔB=0 Majorana nature of ν is very important and should be checked ! Big bang

  6. Nuclear ββ decay provides the most feasible and sensitive way to study the Majorana nature of neutrinos !

  7. n p There are ~35 natural isotopes , but very rare! W W β >2MeV Q β 124 Sn, 130 Te, 136 Xe, 150 Nd, etc. are observed 48 Ca, 76 Ge, 82 Se, 96 Zr, 100 Mo, 110 Pd, 116 Cd, SM process T 1/2 (A,Z+1) (A,Z+2) (A,Z) e (A,Z)→(A,Z+2)+2e - +2ν β β ν 2 e ν e e ν e which can double-beta decay. 0ν ~10 19 -10 21 yr n p X

  8. Light Majorana νexch. is considered T 1 neutrino mass T 1/2 Not found =G (Q,Z)|M | 2 <m β β > 2 0 ν 0 ν / Effective 2 0 ν 1 <m β β > = | ΣU ei m i | 2 i =| (m 1 c 122 +m 2 s 122 e iα21 )c 132 +m 3 s 132 e i(α31-2δ) | All information of the neutrinos are contained; Oscillation parameters, Absolute ν masses, Majorana W as the dominant process. W 0 ν β β (A,Z)→(A,Z+2)+2e - A(Z) A(Z+2) A(Z+1) Beyond the SM process Total lepton number violation. Phase space factor Nuclear matrix element n p e e ν=ν m ν =0 Majorana CP-phases. 0ν >10 26 yr n p X

  9. T 1/20ν lower limits (90%C.L.) and T 1/22ν NEMO-3 KamLAND-Zen GERDA CUORE AURORA NEMO-3 NEMO-3 ELEGANT-VI 19 NEMO-3 Log 10 T 1/20ν (yr) There are many ongoing and planned experiments ! Most sensitive experiments have provided T 1/20ν > 10^25~10^26 yr. T 1/20ν T 1/22ν 18 20 48 Ca 136 Xe 76 Ge 82 Se 96 Zr 100 Mo 116 Cd 150 Nd 130 Te 21 27 26 25 24 23 22 EXO-200

  10. <m β <m β Normal mass hierarchy Inverted mass hierarchy K.K.( 76 Ge,1σ) Quasi- Degenerated mass hierarchy GERDA, CUORE, NEMO3,... KamLAND-Zen β > (eV) β > limit is close to the bottom of the QD region. <m lightetst > (eV) 10 -4 10 -3 10 -2 10 -1 10 -3 10 -2 10 -1 1 <m β β > <(61-165)meV Allowed region and upper limits on <m β β > QD Positive claim on 76 Ge was refuted (KL-Zen and GERDA). Ca Zr Nd Te Se Cd Te 1 Mo Ge Xe 136 − 1 (eV) 10 KamLAND-Zen ( Xe) IH m − 2 10 NH − 3 10 − − 3 − − 4 2 1 10 10 10 10 50 100 150 m (eV) A lightest

  11. FOM for the sensitivity 2ν Region of interest (keV -1 kg -1 yr -1 ) Background index enrichment factor Isotopic abundance/ efficiency detection period Data taking Isotope mass Good energy resolution Remove BG (Ext./Int.) Large amount of isotope 0ν 2ν Current 10 25 ~10 26 yr √ Planned ~10 27 yr O(100)kg => O(1) ton T 1/20ν ∝εa MT bΔ E Isotope selection by large a, 0ν Q β β and long T 1/22ν Summed energy of electrons normalized by Q β β <m ββ >~0.02eV (IH) ~Energy resolution

  12. Concept of the experiment Deep Underground Target nuclei Scalability Large amount Radio-purity Sensors Thick active shield Thick shield

  13. Detection Strategy Event α/γ Internal external (U/Th) Rn γ n BG Scalability Efficiency ΔE Tracking PID topology Pulse shape e - Position Time TPC(Gas, Liq.) (A,Z)+LS Crystal Calorimetry Scintillation Phonons Ionization Signal E VTX PID e - (Bolometer)

  14. Detection Strategy Internal KL-Zen CUORE Majorana BG n γ Rn (U/Th) external α/γ PANDAX-III ΔE Efficiency Scalability SNO+ 136 Xe 76 Ge 130 Te 130 Te 100 Mo SuperNEMO EXO, NEXT, e - Crystal e - PID VTX E Signal Ionization Phonons Scintillation Energy (A,Z)+LS AMoRE TPC(Gas, Liq.) Time Position Pulse shape Event pattern PID Tracking (Bolometry) GERDA 82 Se, 150 Nd

  15. 0 CUPID ( 82 Se) ( 76 Ge, SURF) MAJORANA ( 136 Xe, WIPP) EXO-200 ( 130 Te, SNOLAB) SNO+ ( 136 Xe, CanFranc) NEXT Modane) ( 82 Se, 150 Nd, 48 Ca, SuperNEMO LNGS (Italy) COBRA ( 116 Cd) CUORE( 130 Te) ν GERDA( 76 Ge) ( 136 Xe, CJPL) PANDAX-III MTD( 150 Nd, KEK) AXEL( 136 Xe, Kyoto) ( 48 Ca, Kamioka) CANDLES ( 136 Xe, Kamioka) KamLAND-Zen ( 100 Mo, Y2L) AMoRE activities in the world β β (Calorimetric, tracking/TPC)

  16. GERDA* Prospects LAr Veto, PSD Analysis SiPMs PMTs PMTs 200kg Ge (Current Cryostat) 1000kg Ge T 0ν1/2 >10^27 yr (5yrs) T 0ν1/2 >10^28 yr (LEGEND) ΔE FWHM = detectors 2.8keV @Q(BEGe) Achieved ! μ-on veto ( 42 K) (SS vs MS, A/E) <m β β > <(10-20)meV Phase I Phase II enriched coaxial 35.6kg 37 HPGe GERmanium Detector Array T 0ν1/2 >5.3×10^25 yr (90%C.L.) LNGS 3600m.w.e. 76Ge Q: 2,039 keV enrich. HPGe Phase I+II 34.4kg yr BI=0.7 +1.1-0.5 ×10 -3 kg -1 keV -1 yr -1 <m β 7 Strings of β > <(150-330)meV Sensitivity T 0ν1/2 =4×10^25 yr No signal in ROI, BG free search ! 590m 3 water tank (10mΦ) + 66 PMT Ch. veto 64m 3 Liq.Ar cryostat (90 o K, 4mΦ) WLS Fiber curtain Phase II enriched BEGe

  17. CUORE* β β > < (210-590)meV <m β > 6.6×10 24 yr CUORE Combined 38.1kg yr (10.6kg 130 Te) (5 yr) > 9×10 25 yr ΔE/E~0.2% @Q β Long-term stable operation of a ton-sized bolometric detector ! ×13piles) (4 crystals 1 tower Combined CUORE-0 (FWHM)@2615keV ΔE=7.9±0.6keV Challenging items Validation of the background model in ROI (α, β/γ) will be established. Jan.2017~: Cool down Heat sink 10mK radiation Incident holder Copper (Thermometer) NTD Ge sensor coupling 0.01 kg -1 keV -1 yr -1 thermal Weak (TeO 2 Absorber C∝T 3 ΔT∝E dep /C (FWHM) April-June: Science run (750kg) Cryogenic Underground CUORICINO Observatory for Rare Events CUPID CUORE Upgrade with Particle ID LNGS 3600m.w.e. 130Te Q: 2,528 keV Nat.TeO 2 34.1%( 130 Te) 988 TeO 2 65cm CUORE-0 > 2.8×10 24 yr ( 130 Te) 19.75kg yr (2003-2008) 9.8kg yr T 0ν1/2 ( 130 Te) CUORE > 4×10 24 yr 206kg( 130 Te) 19 towers CUORE est (ROI) MiDBD Heat Sink Copper Holder Weak Thermal Coupling NTD Ge Sensor Absorber (Thermometer) Crystal (TeO 2 ) Incident Radiation

  18. 136 Xe ν EXO, NEXT, TPC (Liq/Gas) light for Scintillation Zen KamLAND- bility to LS High solu- Scalability Excellent well established Techniques are life ! longest 2 Q β One of the High level of safety Non-flammable Non-toxic Chemical stability Purification Enrichment Rare gas β search! β 136 Xe has nice characteristics for 0ν Nat. ab.=8.9% T 1/22ν =2.2×10 21 yr β =2.458MeV PANDAX-III

  19. • • • • • • • • • • • σ/E=1.23% SS vs. MS <m Scintillation+Ionization Water 14m 13m planned installation at SNOLAB 5ton enriched Liq.Xe TPC nEXO Hardware upgrade (90%C.L.) β ><(147-398) meV β (1.5±0.2)×10 -3 T 1/20ν > 1.8×10 25 yr 122 kg yr 44cm EXO-200 Enriched Xenon Observatory WIPP (NM,USA) 1585 m.w.e. 136Xe Q: 2,458 keV Liq.Xe TPC enrich:80.6% kg -1 keV -1 yr -1 Phase I (Sep.2011-Feb.2014) 40cm • Sensitivity: T 1/20ν ~ 10 28 yr (with Ba-tag) Phase II (Jan.-May, 2016) 55.6kg yr

  20. NEXT* with a Xenon TPC NEXT-ton 83 Kr 5.5%@41.5keV => 0.7%@Q β CanFranc Neutrino Experiment Detector concept 0νββ search Electro- luminescence (S2) TPB coated surfaces Ionization Scintillation(S1) Tracking Plane (SiPMTs) for T 1/2 5×10^25 yr. β 100kg enriched Xe, NEXT-100 (2019~) 850 m.w.e. 136Xe Q: 2,458 keV 10-20bar TPC Electro-luminescence (EL) amplification ΔE/E~0.5% (FWHM)@Q β Energy Plane (PMTs) 1792 SiPMs, 12PMTs 50cm drift, 20cm radius, 5~10kg Xe, NEW (2015-2018) BG suppression. β Topological signature for TPB coated surfaces xenon TRACKING PLANE (SiPMs) ENERGY PLANE (PMTs) gas e - e - e - e - scintillation (S1) e - e - ionization electroluminescence (S2) CATHODE ANODE Full active volume rch

  21. 25-150μm 65m => 1% (Direct pixel readout without gas amplification) Cathode (100kV) 1.5m OFHC copper T 1/20ν ~10 27 yr 14m Water pool construction ΔE/E~3%(FWHM) @Q β finished in Jun.2016. World’s deepest ! 0.2μ’s/m 2 /d Horizontal shaft ! 2m Anode readout (MM) Prototype (16kg Xe, 10 bar) Micromegas with Microbulk Micromegas β . R&Ds for Readout; improve Q: 2,458 keV Mesh Pixel/strips PANDAX-III* Particle and Astrophysical Xenon Detector +TMA(1%), 3.5m 3 6720 m.w.e. 136Xe CJPL 90% enrich. TPC 200kg×5 200kg×5 Xe TPC modules in a water pool, ΔE/E~1%(FWHM) @Q β β . High press. (10bar) enriched 136Xe (200kg) • • • • • • • • • 6

  22. KamLAND-Zen Ze ro- n eutrino double beta decay

Recommend


More recommend