dlap online seminar
play

DLAP online Seminar - PowerPoint PPT Presentation

DLAP online Seminar Zoom Webinar, 2020.07.09


  1. 吉岡信行(理研) 量子多体系の表現 DLAP online Seminar ニューラルネットワークで探る ������ ������� ���������� Zoom Webinar, 2020.07.09

  2. 博論タイトル「ニューラルネットワークによる物理状態の判定と表現」 自己紹介 ・非平衡量子ダイナミクス 主な研究内容:量子物理・情報科学の境界から生まれる高速アルゴリズムの探索 共同研究者のみなさま ・ニューラルネットワークによる量子多体状態の効率的表現 吉岡 信行 (Nobuyuki Yoshioka) 2015.03 東京大学理学部物理学科 卒 2017.03 東大理物 修士課程修了 ( 桂研 ) 2020.03 東大理物 博士課程修了 ( 桂研 ) Dr. Ryusuke Dr. Franco Nori Hamazaki 現在 理化学研究所 開拓研究本部 Nori 理論量子物理研究室 Dr. Ravindra 
 Dr. Clemens 
 Chhajlany Gneiting Today ・ NIQS アルゴリズム開発 e.g. 物理量の Error bound Prof. Wataru e.g. オンサーガー代数による Perfect Scar の構築 Mizukami 2

  3. ▸ Introduction to Neural Quantum States Restricted Boltzmann Machine as a quantum state Variational calculation Relationship with tensor networks ▸ Application to open quantum system Steady state as “ground state” of Lindbladian Results by RBM ansatz 3

  4. Machine Learning Simulation of “Probability Distribution” Quantum Many-body 
 Computing Problems

  5. Simulation of “Probability distribution” Data-driven learning Model-driven learning Obtained via fitting into measurements Obtained via optimization of No access to “ground truth” model-based well-defined cost function - Mathematical programming - Machine learning Classical data e.g. combinatorial optimization e.g. image recognition Probability distribution 
 e.g. data science - Recommendation for Monte Carlo Single computational basis - Variational simulation - Quantum tomography Quantum data - Reproduce quantum state, - Costless simulation of 
 Wave function 
 Hamiltonian, Liouvilllian etc. eigenvectors, density mat. Unitary/non-unitary mapping - Tensor Nets, Neural Nets, 
 - Error mitigation Quantum circuits, etc. 5

  6. <latexit sha1_base64="cg0hK924sD/BmEpfULMW9SV2mvY=">ACZXichVHLSsNAFD2Nr1qtrQ9EcGxK7KVAo+VkU3LvuwD2hLSeK0hqZJSNJCLf6AuFUXrhRExM9w4w+46BeIuKzgxoW3aUC0qHeYmTNn7rlzZkYyVMWyGet4hKHhkdEx7hvYtI/FQhOz2QtvWHKPCPrqm7mJdHiqLxjK3YKs8bJhfrkspzUm23t59rctNSdG3fbhm8VBermlJRZNEmKlVsl4NhFmFOhAZB1AVhuJHQg7co4gA6ZDRQB4cGm7AKERa1AqJgMIgroU2cSUhx9jmO4SNtg7I4ZYjE1mis0qrgshqtezUtRy3TKSp1k5QhrLAndse67JHdsxf28WutlOj56VFs9TXcqMcOFlIv/+rqtNs4/BL9adnGxVsOl4V8m4TO8Wcl/fPLroprdTK+1Vds1eyf8V67AHuoHWfJNvkjx1CR9QPTncw+C7HokGotsJWPh+I7FV4sYhlr9N4biGMPCWTo3ApOcYZz7PgF+aE+X6q4HE1s/gWwtIn3feKbQ=</latexit> <latexit sha1_base64="/ZOb2WNQ/YOtVlwsq9Awj9eZpMo=">ACZHichVFNSwJBGH7cvswsLQmCICQxOskYQh8nqUtHP/IDTGR3G21x3V12V8GkP1DXokOngojoZ3TpD3TwDwTR0aBLh17XhSip3mFmnmfd5ZkYyVMWyGet6hJHRsfEJ76Rvyj89EwjOzuUtvWnKPCfrqm4WJdHiqLxnK3YKi8aJhcbksoLUn2nv19ocdNSdG3Pbhu83BrmlJVZNEmKp2rBCMsxpwID4O4CyJwI6UHb7GPA+iQ0UQDHBpswipEWNRKiIPBIK6MDnEmIcXZ5ziGj7RNyuKUIRJbp7FGq5LarTu17QctUynqNRNUoYRZU/sjvXYI7tnL+zj1odp0bfS5tmaDlRiVwspB9/1fVoNnG4ZfqT82qthwvCrk3XCY/i3kgb51dNHLbmWinRV2zV7J/xXrsge6gdZ6k2/SPHMJH31A/OdzD4P8WiyeiG2mE5HktvsVXixiGav03utIYhcp5OhcjlOc4dzLPiFkDA/SBU8riaEbyEsfQK0LInh</latexit> <latexit sha1_base64="cg0hK924sD/BmEpfULMW9SV2mvY=">ACZXichVHLSsNAFD2Nr1qtrQ9EcGxK7KVAo+VkU3LvuwD2hLSeK0hqZJSNJCLf6AuFUXrhRExM9w4w+46BeIuKzgxoW3aUC0qHeYmTNn7rlzZkYyVMWyGet4hKHhkdEx7hvYtI/FQhOz2QtvWHKPCPrqm7mJdHiqLxjK3YKs8bJhfrkspzUm23t59rctNSdG3fbhm8VBermlJRZNEmKlVsl4NhFmFOhAZB1AVhuJHQg7co4gA6ZDRQB4cGm7AKERa1AqJgMIgroU2cSUhx9jmO4SNtg7I4ZYjE1mis0qrgshqtezUtRy3TKSp1k5QhrLAndse67JHdsxf28WutlOj56VFs9TXcqMcOFlIv/+rqtNs4/BL9adnGxVsOl4V8m4TO8Wcl/fPLroprdTK+1Vds1eyf8V67AHuoHWfJNvkjx1CR9QPTncw+C7HokGotsJWPh+I7FV4sYhlr9N4biGMPCWTo3ApOcYZz7PgF+aE+X6q4HE1s/gWwtIn3feKbQ=</latexit> <latexit sha1_base64="RDaSgAJUrBbVl03E5VLSAghm24s=">AC03ichVHPSxtBFH5Zfza1JrWXgpehQUkuYVYE24IgbQ+FeoimUcENYXedTQZnfzA7CbXrXkpPhZ576EmhlNI/w4t/QD3kTxCPCoJ48GWzEDW0fcPMfO973vzZsYKBA8Vpd2MNjI6Nj4x+SD7cOrRdC7/eGYj9NvSZjXbF7csyQCe6xmuJKsK1AMtO1BNu0dl/34psdJkPue+/VXsDqrtn0uMNtUyHVyHtvGpEhXfJuNS5W9vcD9ASqd8y4RJaJEbZdZCyHfIhJpZiEjGEh5M5qmg40rSjQSiObpUYsMSQvNlSpUa+QMs0MTIM9BQUILWKn/8JBuyADza0wQUGHijEAkwIcWyDhQC5OoQIScR8STOIYsatuYxTDRHYX1yZ62ynrod+rGSZqG08ROCUqCczRE/qLntNj+pue0u/1oqSGr1e9nC3+loWNHJfnlYv/6tycVfQGqj+2bMCB54nvXLsPUiY3i3svr7z8dt59eX6XDRPD+kZ9n9Au/QIb+B1Luwfa2z9O2TxA/T7z0MNhbK+mL5xdpiYeV+hWTMAvPoIjvQr8BYqUMNz/8BVZiQzqtW0SPukfe6naplU8wTumPb1Bri2spA=</latexit> Data-driven learning Optimize the model s.t. “distance” between target is minimized. p λ P e.g. Kullback-Leibler divergence ✓ P ( x ) ◆ X D KL ( P || p λ ) = P ( x ) ln p λ ( x ) x Target data P ( x ) Approximant p λ ( x ) Fit “Measurement” data POVM Result Parametrized models http://yann.lecun.com/exdb/mnist/ “Actual” target Further ML task Physical property No access to underlying Pretrained model Entanglement { { U “ground truth” Generator Correlator (e.g. GAN) Fidelity Hand-writing Quantum state 6

  7. <latexit sha1_base64="y4oNMBQD4Q+MCZJv/jSeXzDG5uk=">ADQXichZFLaxRBEIBrxldcH1n1IngZXCKelt4Q8AFCSC4ePOThJoFMXHp6a2ea9PSMPb0LyWT+gH/AgycFEfFn5OIf8BDwDwQvYgQP5pDa2YmSBN0apuv5Vd3B6mSmWVsz3HPnb9w8dLE5dqVq9euT9Zv3FzJkr4R2BaJSsxawDNUmPbSqtwLTXI40DharA5P8yvDtBkMtHP7VaKGzEPtexJwS2FOvWvzHvi+X3dpRq0uW8jtLzI/SRFw21iNI8x5yaMpS4Kz+8ZLnJfcR0q9P5oEyWdY3THjzj1ibmNBFf5s6J4kftdHoZoiD+d2zkJk3fcstTFmL3G0J16gzVZKd5Zo1UZDahkIal/AB+6kICAPsSAoMGSrYBDRt86tIBSrENyClmyJlHqGAGrF9qkKq4BTdpDUkb72KavKHPbOSFrSLot8Q6cEU+8I+sgP2mX1i+zwn73ysdwli3SwYjFtDP56vbyr7FUTNpC9Jf678wWevCwnFXS7GkZGZ5CjPjB9uD5cdLU/k9o59o/nfsj2SyfQg5/i/SIuvYEaPUDr9HWfNVam62Z5qPFmcbsXPUE3AH7sJ9u8HMAtPYQHaIJw5J3JeOsbdfd7+6PUanrVMwtOCHu7yPtuRa</latexit> <latexit sha1_base64="cg0hK924sD/BmEpfULMW9SV2mvY=">ACZXichVHLSsNAFD2Nr1qtrQ9EcGxK7KVAo+VkU3LvuwD2hLSeK0hqZJSNJCLf6AuFUXrhRExM9w4w+46BeIuKzgxoW3aUC0qHeYmTNn7rlzZkYyVMWyGet4hKHhkdEx7hvYtI/FQhOz2QtvWHKPCPrqm7mJdHiqLxjK3YKs8bJhfrkspzUm23t59rctNSdG3fbhm8VBermlJRZNEmKlVsl4NhFmFOhAZB1AVhuJHQg7co4gA6ZDRQB4cGm7AKERa1AqJgMIgroU2cSUhx9jmO4SNtg7I4ZYjE1mis0qrgshqtezUtRy3TKSp1k5QhrLAndse67JHdsxf28WutlOj56VFs9TXcqMcOFlIv/+rqtNs4/BL9adnGxVsOl4V8m4TO8Wcl/fPLroprdTK+1Vds1eyf8V67AHuoHWfJNvkjx1CR9QPTncw+C7HokGotsJWPh+I7FV4sYhlr9N4biGMPCWTo3ApOcYZz7PgF+aE+X6q4HE1s/gWwtIn3feKbQ=</latexit> <latexit sha1_base64="R10YyoAuJjD7iUruIGMwGeJgxg=">ACd3ichVHLSsNAFD2N7/po1Y3gwmCpuCoTEXyAILpx2YetQltCEkcbmpdJWtTiD/gDLgRBQVT8Df+gIt+grisILb9OAqKh3mJkzZ+65c2ZGdQzd8xlrRoSu7p7ev6B6ODQ8EgsPjpW8Oyaq/G8Zhu2u60qHjd0i+d93Tf4tuNyxVQNvqVW19v7W3XuerptbfqHDi+byp6l7+qa4hMlx8c2xBWx5NVMeV+sUE/L+3I8wVIsCPEnkEKQBhpO36NEnZgQ0MNJjgs+IQNKPCoFSGBwSGujAZxLiE92Oc4RpS0NcrilKEQW6Vxj1bFkLVo3a7pBWqNTjGou6QUkWSP7Ja12AO7Y0/s/dajaBG28shzWpHyx05djKRe/1XZdLso/Kp+tOzj10sBl518u4ETPsWkdfPzpt5ZazycYMu2TP5P+CNdk93cCqv2hXGZ49Q5Q+QPr+3D9BYS4lzaeWMvOJ1bXwK/oxiWnM0nsvYBUbSCNP5x7gHNe4ibwJU8KMNtJFSKhZhxfQpA+APklkEU=</latexit> <latexit sha1_base64="yUqCZV/HAQfzyrALVxdix0XcIsU=">AC+HichVFNaxQxGH5n/KrR1e9CB4cXCr1smRLwQ8QSkXocdu6baEpQyZ9dxuayQyZ7EI7nT/g1UMPXlSQUrz5F7z4Bz0J4jHClLowXdnR6S26huSvHnyPG+eJFGqVeYO/D8c+cvXLw0drl25eq16+P1GzeXsqRvJXZkohO7EokMtTLYcpXEktijSuBxtPhvuLw/QZioxL9xWimux6BnVI4gsL6q+dhzm0cDGJZPOV9s05cdDl3G+hEkfMkRStcYo2IMRe2FytTFAHvWiFzroXpaeTtTIW/FDtzO8EJgNuSVJzNPpMa1husycoITietKmlAFe2kvgc1iEBCX2IAcGAo1yDgIzaKrSAQUrYGuSEWcpUuY9QI20fWIhMQShmzT2aLVaoYbWw5pZqZ0iqZuSRnABPvC9tkh+8w+sK/s+K+18rLG0MsWzdFIi2k4/vL24o/qmKaHWz8Vv3Ts4MuPCq9KvKelsjwFnKkH2zvHi4+WZjI7N37Bv5f8sO2Ce6gRl8l+/nceE1OgDWn8+9+lkarZm4+np9uzMxWXzEGd+AeTNJ7P4QZmIM2dOjcI+uN+k98Lf9N/6evz+i+l6luQUnwv/4E4jzx2Y=</latexit> Variational simulation Optimize the ansatz w.r.t target depending on what you want to do Ψ θ e.g. Hamiltonian e.g. Product of Liouvillian L † ˆ hh ρ θ | ˆ h Ψ θ | H | Ψ θ i L| ρ θ ii E vmc = argmin 0 = argmin h Ψ θ | Ψ θ i hh ρ θ | ρ θ ii θ θ Model Minimize GS approximant Ψ θ energy Static property X { Symmetry breaking H = h q P q Ordering Parametrized model q Minimize “energy” “Ground truth” accessible by (super)-exponential cost Non-equilibrium Steady state ρ θ property Appropriate ansatz, “cost function”, optimization needed 7

  8. Simulation/Estimation of “Probability distribution” Data-driven Model-driven Obtained via fitting into measurements Obtained via optimization of No access to “ground truth” model-based well-defined cost function - Mathematical programming - Machine learning Classical data e.g. combinatorial optimization e.g. image recognition Probability distribution 
 e.g. data science - Recommendation for Monte Carlo Single computational basis - Variational simulation - Quantum tomography Quantum data - Reproduce quantum state, - Costless simulation of 
 Wave function 
 Hamiltonian, Liouvilllian etc. eigenvectors, density mat. Unitary/non-unitary mapping - Tensor Nets, Neural Nets, 
 - Error mitigation Quantum circuits, etc. 8

Recommend


More recommend