distinguisher dependent simulation
play

Distinguisher-Dependent Simulation Dakshita Khurana Joint work with - PowerPoint PPT Presentation

Distinguisher-Dependent Simulation Dakshita Khurana Joint work with Abhishek Jain, Yael Kalai and Ron Rothblum Interactive Proofs for NP Interactive Proof (GMR85, Babai85) ? , P V accept Security Against Malicious


  1. Distinguisher-Dependent Simulation Dakshita Khurana Joint work with Abhishek Jain, Yael Kalai and Ron Rothblum

  2. Interactive Proofs for NP Interactive Proof (GMR85, Babai85) 𝑦 ∈ β„’? 𝑦, π‘₯ P V accept

  3. Security Against Malicious Provers Soundness 𝑦 βˆ‰ β„’? 𝑦 βˆ— P V reject

  4. Security Against Malicious Verifiers Shouldn’t learn witness w ο‚΄ Zero-Knowledge (GMR85) ο‚΄ Distributional Zero-Knowledge (Goldreich93) ο‚΄ Weak Zero-Knowledge (DNRS99) ο‚΄ Witness Hiding (FS90) ο‚΄ Witness Indistinguishability (FS90) ο‚΄ Strong Witness Indistinguishability (Goldreich93)

  5. Zero-Knowledge βˆ€ 𝑦, 𝑦, π‘₯ 𝑦 β‰ˆ βˆ— βˆ— Sim P V V

  6. Distributional Zero-Knowledge Can sample other 𝑦 β€² , π‘₯β€² βˆ€ efficiently sampleable (π‘Œ, 𝑋) but must simulate proof for external 𝑦 without π‘₯ 𝑦, π‘₯ ∼ 𝑦 ∼ π‘Œ (π‘Œ, 𝑋) β‰ˆ βˆ— Sim βˆ— V P V Over the randomness of 𝑦

  7. Weak Zero-Knowledge Gets to observe the output of the distinguisher βˆ— βˆ— P V β‰ˆ V Sim 0/1 0/1 D D 𝑄𝑠 𝐸 = 1 π‘ π‘“π‘π‘š βˆ’ Pr 𝐸 = 1 𝑇𝑗𝑛 ≀ π‘œπ‘“π‘•π‘š

  8. Witness Hiding βˆ€ efficiently sampleable π‘Œ, 𝑋 with hard to find witnesses, 𝑦, π‘₯ ∼ (π‘Œ, 𝑋) βˆ— P V π‘₯ 𝑦

  9. Witness Indistinguishability 𝑦, π‘₯ 1 𝑦, π‘₯ 2 β‰ˆ βˆ— βˆ— P P V V

  10. Strong Witness Indistinguishability 𝑦 1 , π‘₯ 1 𝑦 2 , π‘₯ 2 βˆ— β‰ˆ βˆ— P P V V when 𝑦 1 β‰ˆ 𝑦 2

  11. Round Complexity Timeline Impossibilities (GO94): - 2 round weak ZK - 2 round distributional ZK Can we do better than WI in Impossibilities: Impossibility: - 2 round ZK (GO94) - 3 round BB public-coin 2 rounds? Or even 3 rounds? - 3 round BB ZK (GK92) Witness Hiding (HRS09) Strong WI, witness hiding: … … … Round complexity open 3 round Witness Indistinguishability 1 & 2 round WI (DN00, 5 round ZK (GMR85, Blum86, FS90), BOV03, GOS06, BP15) proofs (GK96) 4 round Witness Hiding (FS90) 3 round ZK via non-standard 4 round ZK arguments (FS90, BJY97) assumptions (HT98, LM01, BP04, CD08, GLR12, BP13, BBKPV16, BKP17)

  12. Overcoming Barriers

  13. Distributional Protocols ο‚΄ Prover samples instance 𝑦 from some distribution P V 𝑦 𝑦, π‘₯ ∼ (π‘Œ, 𝑋) Why should we care? ο‚΄ ZK proofs used to prove correctness of cryptographic computation ο‚΄ Almost always, instances are chosen from some distribution ο‚΄ Strong WI, WH by definition are distributional notions

  14. Distributional Protocols ο‚΄ Prover samples instance 𝑦 from some distribution P V Useful in secure computation: β€’ [KO05, GLOV14, COSV16] Our paper: extractable β€’ 𝑦 𝑦, π‘₯ ∼ commitments, 3 round 2pc (π‘Œ, 𝑋) Specific 2 & 3 round protocols: β€’ [KS17, K17, ACJ17] ο‚΄ In 2 round protocols, P sends 𝑦 together with proof ο‚΄ Adaptive soundness: P* samples 𝑦 after V’s message ο‚΄ We will restrict to: delayed-input protocols ο‚΄ Cheating verifier cannot choose first message depending on 𝑦

  15. Distributional Protocols , Delayed-Input ο‚΄ Prover samples instance 𝑦 from some distribution P V 𝑦 𝑦, π‘₯ ∼ (π‘Œ, 𝑋) ο‚΄ Simulate the view of malicious V*, when V* is committed to 1 st message, before P reveals instance 𝑦 ? ο‚΄ Distributional privacy for delayed-input statements . ο‚΄ Get around negative results!

  16. Our Results Assuming quasi-polynomial DDH, QR or N th residuosity, we get ο‚΄ 2 Round arguments in the delayed-input setting Sim depends on  Distributional weak ZK distinguisher  Witness Hiding  Strong Witness Indistinguishability ο‚΄ 2 Round WI arguments [concurrent work: BGISW17]  Previously, trapdoor perm (DN00), b-maps (GOS06), or iO (BP15) ο‚΄ 3 Round protocols from polynomial hardness + applications

  17. New Technique: Black-box Simulation in 2 Rounds

  18. Kalai-Raz (KR09) Transform PIR scheme (1) Interactive Proof (2) 2-Message Argument 𝑏 0 π‘Ÿ 1 , (π‘Ÿ 1 , π‘Ÿ 2 ) π‘Ÿ 1 βˆ— β‡’ 𝑏 1 P * P V V π‘Ÿ 2 𝑏 2 𝑏 0 , 𝑏 1 , 𝑏 2 - KR09: Assuming quasi-polynomially secure PIR, (2) is sound against adaptive PPT P*. - Our goal: 2 message arguments for NP with privacy. - Apply KR09 transform to three round proof of Blum86.

  19. Blum Protocol for Graph Hamiltonicity π»π‘ π‘π‘žβ„Ž 𝐻, πΌπ‘π‘›π‘—π‘šπ‘’π‘π‘œπ‘—π‘π‘œ 𝐼 𝐷𝑝𝑛 Ο€ 𝐻 , 𝐷𝑝𝑛(Ο€ ) 𝑓 = 0 or e = 1 P V 𝐸𝑓𝑑𝑝𝑛 Ο€ 𝐻 , 𝐸𝑓𝑑𝑝𝑛(Ο€ ), OR 𝐸𝑓𝑑𝑝𝑛 𝑓𝑒𝑕𝑓𝑑 𝑝𝑔 𝐼 π‘—π‘œ Ο€ 𝐻 - Honest verifier zero-knowledge: Sim that knows 𝑓 can simulate. - Repeat in parallel to amplify soundness. Preserves honest verifier ZK.

  20. KR09 transform on Blum π»π‘ π‘π‘žβ„Ž 𝐻, πΌπ‘π‘›π‘—π‘šπ‘’π‘π‘œπ‘—π‘π‘œ 𝐼 𝑓 = 0 or e = 1 βˆ— 𝐷𝑝𝑛 Ο€ 𝐻 , 𝐷𝑝𝑛(Ο€ ) P V 𝐸𝑓𝑑𝑝𝑛 Ο€ 𝐻 , 𝐸𝑓𝑑𝑝𝑛(Ο€ ), OR 𝐸𝑓𝑑𝑝𝑛 𝑓𝑒𝑕𝑓𝑑 𝑝𝑔 𝐼 π‘—π‘œ Ο€ 𝐻 - Remains honest verifier zero-knowledge. - What if malicious V* sends malformed query that doesn’t encode any bit? - Prevent this by using a special PIR scheme.

  21. 2-Message Oblivious Transfer π·β„Žπ‘π‘—π‘‘π‘“ 𝑐𝑗𝑒 𝑐 𝑁𝑓𝑑𝑑𝑏𝑕𝑓𝑑 (𝑛 0 , 𝑛 1 ) 𝑑 = π‘ƒπ‘ˆ 1 (𝑐) Known constructions from S R DDH (NP01), π‘ƒπ‘ˆ 2 (𝑑, 𝑛 0 , 𝑛 1 ) Quadratic Residuosity and N th Residuosity (HK05) 𝑛 𝑐 - S cannot guess b - R cannot distinguish OT 2 𝑛 0 , 𝑛 1 from : β€’ OT 2 𝑛 0 , 𝑛 0 when b = 0 , OR β€’ OT 2 𝑛 1 , 𝑛 1 when b = 1 . - Every string 𝑑 corresponds to π‘ƒπ‘ˆ 1 (𝑐) for some bit 𝑐

  22. Kalai-Raz Transform on Blum using OT Blum Proof (1) Argument (2) { 𝑏 i } i ∈ [N] (𝑓 i ) i ∈ [N] β‡’ P P V V {𝑓 i } i ∈ [N] { 𝑏 i } i ∈ [N] , (𝑨 𝑗0 , 𝑨 i 1 ) i ∈ [N] { 𝑨 i, e } i ∈ [N] - KR09: (2) remains sound against PPT provers, even if they choose 𝑦 adaptively - What about privacy?

  23. Kalai-Raz Transform on Blum Real World (𝑓 i ) i ∈ [N] (𝑓 i ) i ∈ [N] βˆ— βˆ— Sim P V V { 𝑏 i } i ∈ [N] , (𝑨 𝑗0, 𝑨 i 1 ) i ∈ [N] (𝑨 𝑗0, 𝑨 i 1 ) i ∈ [N] { 𝑏 i } i ∈ [N] - Every message sent by V* corresponds to an encryption of some {𝑓 i } i ∈ [N] Polynomial - If Sim knew {𝑓 i } i ∈ [N] , then easy to simulate (by HVZK). Simulation?? - Privacy via super-poly simulation: Sim breaks encryption to find 𝑓 𝑗 [BGISW17]

  24. Rely on the Distinguisher to find e Real World Ideal World (𝑓 i ) i ∈ [N] (𝑓 i ) i ∈ [N] βˆ— βˆ— Sim P V V { 𝑏 i } i ∈ [N] , (𝑨 𝑗0, 𝑨 i 1 ) i ∈ [N] D D

  25. Simplify: single parallel execution Unclear how to simulate! Real World Ideal World 𝑓 𝑓 βˆ— βˆ— Sim P V V 𝑏, (𝑨 0 , 𝑨 1 ) D D

  26. Simplify: single parallel execution Real World Ideal World 𝑓 𝑓 βˆ— βˆ— Sim P V V 𝑏, (𝑨 0 , 𝑨 1 ) 𝑏, π‘˜π‘£π‘œπ‘™! D D Can D tell the difference? - Suppose NOT : eg , D doesn’t know randomness for 𝑓 - 𝑏 is already computationally hiding, Sim can easily sample π‘˜π‘£π‘œπ‘™! 𝑏,

  27. Simplify: Single parallel execution Real World Ideal World 𝑓 𝑓 βˆ— βˆ— Sim P V V 𝑏, (𝑨 0 , 𝑨 1 ) 𝑏, π‘˜π‘£π‘œπ‘™! D D Can D tell the difference? Sim will use D - Suppose YES : eg, D knows randomness for 𝑓 to extract 𝒇 ! - Sim can’t just sample : will be distinguishable! π‘˜π‘£π‘œπ‘™! 𝑏,

  28. Recall: Distributional Simulation Ideal World 𝑓 βˆ— Sim V (𝑨 0 , 𝑨 1 ) 𝑦′, 𝑏 D - Recall: want a simulator for 𝑦 ∼ π‘Œ , which generates a proof without witness. - However, Sim can sample other ( 𝑦 ’, π‘₯ ’) ∼ ( π‘Œ , 𝑋 ) from the same distribution. - Sim can also sample proofs for these other ( 𝑦 ’, π‘₯ ’) ∼ ( π‘Œ , 𝑋 ).

  29. Main Simulation Technique (𝟏) 𝑓 βˆ— Sim V (π’ƒπ’…π’–π’—π’ƒπ’Ž) (π’œ 𝟏 , π’œ 𝟏 ) 𝑦′, 𝑏 D 𝑓 βˆ— Sim V OR 𝑦′, 𝑏 (π’œ 𝟏 , π’œ 𝟐 ) (𝟐) D 𝑓 βˆ— Sim V (π’œ 𝟐 , π’œ 𝟐 ) 𝑦′, 𝑏 Checks if π’ƒπ’…π’–π’—π’ƒπ’Ž β‰ˆ (𝟏) Or, if π’ƒπ’…π’–π’—π’ƒπ’Ž β‰ˆ (𝟐) D Use this to extract e.

  30. Polynomial Simulation Simulate proof for external 𝑦 without π‘₯ 𝑓 βˆ— Sim V (π’œ 𝟏 , π’œ 𝟐 ) 𝑦′, 𝑏 (π’œ 𝟏 , π’œ 𝟏 ) (π’œ 𝟐 , π’œ 𝟐 ) D 1 0 Simulator rewinds the distinguisher to learn the OT challenge 𝑓 . - Technique extends to extracting {𝑓 i } i ∈ [N] from parallel repetition. -

  31. Perspective: Extraction in Cryptography - Black-box polynomial simulation strategy that requires only 2 messages. - Previously, rewinding took more rounds βˆ— βˆ— Sim Sim V V D - Towards resolving open problems on round complexity of WH, strong WI. - Applications to multiple 2-round, 3-round protocols, beyond proofs.

  32. Conclusion & Open Problems

Recommend


More recommend