dissipation enhanced coherence in superconducting qubits
play

DISSIPATION ENHANCED COHERENCE IN SUPERCONDUCTING QUBITS - PowerPoint PPT Presentation

DISSIPATION ENHANCED COHERENCE IN SUPERCONDUCTING QUBITS Collaborators Prof. A.N. Korotkov (UCR) Prof. S.M. Girvin (Yale) Dr. Mohan Sarovar (Sandia) Prof. B. Whaley (UCB) IRFAN SIDDIQI CQIQC Seminar March 22, 2013 Quantum Nanoelectronics


  1. DISSIPATION ENHANCED COHERENCE IN SUPERCONDUCTING QUBITS Collaborators Prof. A.N. Korotkov (UCR) Prof. S.M. Girvin (Yale) Dr. Mohan Sarovar (Sandia) Prof. B. Whaley (UCB) IRFAN SIDDIQI CQIQC Seminar March 22, 2013 Quantum Nanoelectronics Laboratory U. Toronto Department of Physics, UC Berkeley

  2. AN INDUSTRY BUILT ON SAND… 1947 Bardeen, Brattain, Shockley 1956 Nobel Prize

  3. Trapped ions QUANTUM BITS quantum energy levels h NV Centers Energy f 1 e Molecules g 0 Quantum Dot Superconducting Circuit • standard nanofabrication • engineered parameters • decoherence (T 1 , T 2 )

  4. THE QUBIT

  5. HOW CAN A SUPERCONDUCTING CIRCUIT BECOME QUANTUM-MECHANICAL AT THE LEVEL OF CURRENTS AND VOLTAGES? SIMPLEST EXAMPLE: SUPERCONDUCTING LC OSCILLATOR CIRCUIT MICROFABRICATION L ~ 3nH, C ~ 10pF, ω r /2 π ~ 1GHz, Q ~ 106

  6. LC OSCILLATOR AS A QUANTUM CIRCUIT E φ + q V - q I ω h r φ [ ] φ = h , q i ω > k T h φ = r B LI 10mK 1GHz = q C V (~ 50mK)

  7. THE JOSEPHSON TUNNEL JUNCTION: NON-LINEARITY AT ITS FINEST! δ I 0 δ = δ I ( ) I sin( ) 0 (NON-LINEAR INDUCTOR) = − h δ δ U ( ) I cos( ) 0 2 e

  8. SUPERCONDUCTING TRANSMON QUBIT LJ ~ 13 nH C ~ 70 fF • Tunable qubit frequency • ω 01 ~ 5-8 GHz J. Koch et al., Physical Review A 76, 042319 (2007)

  9. C Josephson tunnel junctions LJ

  10. THE MEASUREMENT APPARATUS

  11. MEASUREMENT : COUPLE TO E-M FIELD OF CAVITY (Jaynes-Cummings) 1 0 Transmission Cavity Frequency

  12. THE CHALLENGE OF GREGARIOUS QUBITS… Vacuum Fluctuations Circuit Based “Defects” Qubit INFORMATION BACKACTION • Current state of the art (no control): T1, T2 ~ 10-100’s µ s • Active control via engineered dissipation - measurement based feedback (PART I) - quantum bath engineering (PART II)

  13. HOW DO WE STABILIZE AN OSCILLATION? QUANTUM FEEDBACK via WEAK CONTINUOUS MEASUREMENT R. Vijay et al., Nature 490 , 77 (2012).

  14. MEASUREMENT BASED FEEDBACK Vacuum Fluctuations Circuit Based “Defects” Qubit INFORMATION BACKACTION Resonant Cavity CONTROL WEAK MEASUREMENTS TO A. N. Korotkov, PRB 1999 H. M. Wiseman, G. J. Milburn, STABILIZE RABI OSCILLATIONS Cambridge Univ. Press, 2009

  15. INITIAL STATE: |ψ〉 = |0〉 + |1〉 Strong QND Measurement Weak QND Measurement 0 Quantum Co. The Nils Bohr Co. 1 Quantum Co. The Nils Bohr Co.

  16. STRONG MEASUREMENT 1 0 0 Nonuniform Magnetic field 1 Spin ½ Particle Position Atomic Beam Superposition State PROJECTIVE MEASUREMENT: Ψ = α + β 0 1 ABLE TO RESOLVE STATES

  17. WEAK MEASUREMENT 1 0 Nonuniform Magnetic field Spin ½ Particle Position Atomic Beam Superposition State EXTRACT SOME INFORMATION, Ψ = α + β 0 1 BUT NOT ENOUGH TO DETERMINE STATE

  18. “BAD” MEASUREMENT 1 0 0 Nonuniform Magnetic field 1 Spin ½ Particle Position Atomic Beam Superposition State PROJECTIVE MEASUREMENT BUT Ψ = α + β 0 1 CAN’T RESOLVE POINTER STATES

  19. MEASUREMENT: COUPLE TO E-M FIELD OF CAVITY (Jaynes-Cummings) 1 0 VARY MEASUREMENT STRENGTH Cavity USING DISPERSIVE SHIFT & Transmission PHOTON NUMBER NEED TO DETECT ~ SINGLE MICROWAVE PHOTONS in T1 ~ µ s Frequency

  20. THE AMPLIFIER

  21. PARAMETRIC AMPLIFICATION LJ ~ 0.1 nH C ~ 10000 fF 2 / 2 ) e Ω 0 I h ( U 0 M. J. Hatridge et al., Phys. Rev . B 83 , 134501 (2011)

  22. PARAMETRIC AMPLIFICATION ω idler ω pump ω pump Non-linear Medium ω signal ω signal ω pump = ω signal + ω idler 2ω pump = ω signal + ω idler

  23. Tunnel Al Lumped LC SQUID Resonator junction 4-8 GHz Coupled to 50 Ω Q = 26 Nb 4 µ m ground plane Flux line Capacitor Capacitor M. Hatridge et al., Phys. Rev . B 83 , 134501 (2011) 100 µ m

  24. EXPERIMENTAL SETUP OUTPUT INPUT DRIVE

  25. SINGLE SHOT MEASUREMENT TRACES qubit cavity (π, 2π) 1 0 SEMICONDUCTOR HEMT AMPLIFIER JOSEPHSON PARAMETRIC AMPLIFIER R. Vijay et al., Phys. Rev. Lett. 106 , 110502 (2011)

  26. RABI OSCILLATIONS No Measurement Weak Measurement Strong Measurement • Noisy detector output <-> Random evolution of qubit • Stabilize oscillatory motion (eg. Rabi Oscillations) by locking to a classical clock A. N. Korotkov, Phys. Rev. B 60, 5737 (1999) A. Frisk Kockum, L. Tornberg, and G. Johansson, arXiv:1202.2386v2 C. Sayrin et al., Nature 477 , 73 (2011) A. Palacios-Laloy et al., Nature Phys. 6 , 442 (2010) H. M. Wiseman, G. J. Milburn, Quantum Measurement and Control, (Cambridge Univ. Press, 2009)

  27. RABI OSCILLATIONS with CONTINUOUS STRONG MEASUREMENT turn on Rabi drive • Continuously drive qubit Γ ↓ Γ ↑ • Continuously measure • Display single measurement Strong Measurement Pins Qubit

  28. QUANTUM ZENO EFFECT ( Γ ↑ + Γ ↓ ) / ν Rabi transitions suppressed n W. M. Itano et al., Phys. Rev . A 41 , 2295 (1990) J. Gambetta et al., Phys. Rev . A 77 , 012112 (2008)

  29. VARYING MEASUREMENT STRENGTH = n 35 (0, π) 1 0 = n 20 τ = 400 ns = • Integrate measurement trace n 10 for 400 ns • Repeat and histogram = n 2 • ~ 2x quantum noise floor

  30. RABI OSCILLATIONS with CONTINUOUS WEAK MEASUREMENT: ENSEMBLE AVERAGE • Continuously drive qubit • Continuously measure (weakly) • Repeat • Display average Each individual trace has random, measurement induced phase jitter

  31. STABILIZING A QUANTUM “VOLTAGE CONTROLLED OSCILLATOR” Phase locked loop (PLL) Drive Oscillator ( ω 01 ) Feedback on A to synchronize with reference Quantum VCO Ω R(A) A (qubit Rabi flopping) Comparator

  32. STABILIZED RABI OSCILLATIONS Feedback OFF Feedback ON

  33. STILL GOING… • Single quadrature measurement • Operate with measurement dephasing dominant • Appearance of narrow peak when PLL operational

  34. REPHASING THE QUBIT Start Rabi Oscillations Perform tomography Turn on Feedback Measurement induced dephasing

  35. STATE TOMOGRAPHY • Observe expected rotation in the X,Z plane • Observe Bloch vector reduced to 50% of maximum

  36. FEEDBACK EFFICIENCY 2 = D Γ Ω 1 F / + R η Γ Ω / F R D: “feedback efficiency” F: feedback strength η : detector efficiency (0-1) Γ : dephasing rate Ω R : Rabi frequency (A.N. Korotkov) • Analytics do not include delay time, finite bandwidth, T 1 • Numerics include delay and bandwidth  good agreement

  37. CAN WE OBSERVE THE “PHYSICAL” EFFECTS OF SQUEEZED VACUUM? SUPPRESSION OF THE RADIATIVE DECAY OF ATOMIC COHERENCE IN SQUEEZED VACUUM K. Murch et al., arXiv: 1301.6276

  38. QUANTUM BATH ENGINEERING: SQUEEZING Vacuum Fluctuations Circuit Based Parametric Qubit Amplifier Resonant Cavity Slusher et al, PRL 1985 SQUEEZED LIGHT / MATTER INTERACTION Treps et al, PRL 2002 MODIFIES TRANSVERSE/LONGITUDINAL DECAY Gardiner, PRL 1986

  39. T 1 = 560 ns T 2 *= 1080 ns (polariton regime)

  40. SQUEEZING MOMENTS

  41. RAMSEY WITH GAUSSIAN FLUCTUATIONS

  42. RAMSEY WITH GAUSSIAN FLUCTUATIONS

  43. RAMSEY WITH SQUEEZED FLUCTUATIONS

  44. QUBIT ENABLED RECONSTRUCTION OF AN ITINERANT SQUEEZED STATE

  45. ROTATING THE SQUEEZER

  46. HOW EFFICIENT IS THE SQUEEZING?

  47. FUTURE DIRECTIONS • QUANTUM FEEDBACK/CONTROL - OPTIMIZE EFFICIENCY - FULL BAYESIAN FEEDBACK - GENERATION/STABILIZATION OF ENTANGLED STATES • MULTIPLEXED QUBIT READOUT • ON-CHIP PARAMPS - BACKACTION OF NONLINEAR TANK CIRCUIT - TRANSMISSION LINE AMPLIFIERS

  48. QNL Dr. Kater Murch Dr. Andrew Schmidt Dr. Shay Hacohen-Gourgy Dr. Nico Roch Eli Levenson-Falk Edward Henry Chris Macklin Natania Antler Steven Weber Andrew Eddins Mollie Schwartz Daniel Slichter (NIST) Michael Hatridge (Yale) Anirudh Narla (Yale) Zlatko Minev (Yale) Yu-Dong Sun Ravi Naik (U. Chicago) Dr. R. Vijay (TIFR) Seita Onishi (UC Berkeley) Dr. Ofer Naaman (Grumann)

  49. HOW DO WE STABILIZE A SUPERPOSITION ? CAVITY ASSISTED QUANTUM BATH ENGINEERING K. Murch et al., Phys. Rev. Lett. 109 , 183602 (2012)

  50. QUANTUM BATH ENGINEERING: COOLING Vacuum Fluctuations Circuit Based Qubit Resonant Cavity Poyatos, Zoller (1996) Lutkenhaus (1998) Wiseman (1994) Kraus (2008) Diehl (2008,2010) AUTONOMOUSLY COOL TO ANY Schirmer (2010) Wang (2001,2005) ARBITRARY STATE ON THE BLOCH SPHERE Carvalho (2007, 2008) Marcos (2012)

  51. QUANTUM RESERVOIR: SHOT NOISE IN DRIVEN CAVITY ∆ C = + κ ∆ C = − κ 3 3 ω d ω C ∆ = ω − ω Noise peaks at ω < 0 C d C ∆ C > 0 : Cavity emits  heating ∆ C < Noise peaks at ω > 0 0 : Cavity absorbs  cooling A.A. Clerk et al., Rev. Mod. Phys 82, 1155 (2010)

  52. CAVITY ASSISTED COOLING g − e − = • Drive qubit at ω q (on resonance) 2 • Ω R / 2 π ~ 10 MHz  thermal state • Apply additional tone at ω d (red detuned) • Cavity enhances anti-Stokes response g + e + =  cool thermal state to |+> 2

  53. BUILDING UP COHERENCE • Conventional Ramsey experiment - T2* = 4.9 µ s ; 40% contrast • Apply tone at qubit frequency ω q’ & ω d (∆ C = −Ω R ) • Cool for a variable cooling time • π /2 pulse slightly detuned from ω q’ waiting time • Oscillations persist indefinitely

Recommend


More recommend