discrete parameters in petri nets
play

Discrete Parameters in Petri Nets SYNCOP2015 Based on a Paper - PowerPoint PPT Presentation

Discrete Parameters in Petri Nets SYNCOP2015 Based on a Paper accepted in PN2015 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux April 22, 2015 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets


  1. Discrete Parameters in Petri Nets SYNCOP2015 Based on a Paper accepted in PN2015 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux April 22, 2015 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 1 / 34

  2. 1 Introducing Parameters 2 Undecidability of the General Case 3 Toward Decidable Subclasses 4 Conclusion Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 2 / 34

  3. 1 Introducing Parameters Preliminaries On the Use of Parameters Parametric Properties 2 Undecidability of the General Case 3 Toward Decidable Subclasses 4 Conclusion Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 3 / 34

  4. Why Introducing Parameters ? modeling arbitrary large amount of processes (markings) modeling unspecified aspect of the environement ... Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 4 / 34

  5. Classic Model ? a marked Petri Net (PPN) p 1 p 4 t 1 t 2 3 2 p 3 p 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 5 / 34

  6. Classic Model ? a marked Petri Net (PPN) p 1 p 4 t 1 t 2 3 2 p 3 p 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 5 / 34

  7. Classic Model ? a marked Petri Net (PPN) p 1 p 4 t 1 t 2 3 2 p 3 p 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 5 / 34

  8. Generalization toward Parametric marked Petri Net (PPN) p 1 p 3 λ 2 t 1 t 2 λ 1 λ 2 p 3 p 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 6 / 34

  9. Generalization toward Parametric marked Petri Net (PPN) p 1 p 3 2 t 1 t 2 3 λ 3 p 3 p 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 6 / 34

  10. Generalization toward Parametric marked Petri Net (PPN) p 1 λ p 3 2 t 1 t 2 3 p 3 p 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 6 / 34

  11. Generalization toward Parametric marked Petri Net (PPN) p 1 λ p 3 λ 2 t 1 t 2 λ 1 λ 2 λ 3 p 3 p 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 6 / 34

  12. Some concrete examples Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 7 / 34

  13. Some concrete examples p 1 p 2 t λ Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 7 / 34

  14. Some Concrete Examples Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 8 / 34

  15. Some Concrete Examples p 1 p 2 p 1 p 2 t t λ 1 λ 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 8 / 34

  16. Instantiation p 1 p 3 ν 1 ( λ ) = 2 t 1 t 2 ν 1 ( λ 1 ) = 3 ν 1 ( λ 2 ) = 1 3 2 ν 1 ( λ 3 ) = 2 p 3 p 2 p 1 λ p 3 λ 2 t 1 t 2 λ 1 λ 2 λ 3 p 1 p 3 p 2 p 3 ν 2 ( λ ) = 3 2 t 1 t 2 ν 2 ( λ 1 ) = 1 ν 2 ( λ 2 ) = 2 2 ν 2 ( λ 3 ) = 1 p 3 p 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 9 / 34

  17. Instantiation p 1 p 3 ν 1 ( λ ) = 2 t 1 t 2 ν 1 ( λ 1 ) = 3 ν 1 ( λ 2 ) = 1 3 2 ν 1 ( λ 3 ) = 2 p 3 p 2 p 1 λ p 3 λ 2 t 1 t 2 λ 1 λ 2 λ 3 p 1 p 3 p 2 p 3 ν 2 ( λ ) = 3 2 t 1 t 2 ν 2 ( λ 1 ) = 1 ν 2 ( λ 2 ) = 2 2 ν 2 ( λ 3 ) = 1 p 3 p 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 9 / 34

  18. Instantiation p 1 p 3 ν 1 ( λ ) = 2 t 1 t 2 ν 1 ( λ 1 ) = 3 ν 1 ( λ 2 ) = 1 3 2 ν 1 ( λ 3 ) = 2 p 3 p 2 p 1 λ p 3 λ 2 t 1 t 2 λ 1 λ 2 λ 3 p 1 p 3 p 2 p 3 ν 2 ( λ ) = 3 2 t 1 t 2 ν 2 ( λ 1 ) = 1 ν 2 ( λ 2 ) = 2 2 ν 2 ( λ 3 ) = 1 p 3 p 2 Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 9 / 34

  19. Reminders... Definition (Reachability) Let S = ( N , m 0 ) = ( P , T , Pre , Post , m 0 ) and m a marking of S , S reaches m iff m ∈ RS ( S ) . Definition (Coverability) Let S = ( N , m 0 ) = ( P , T , Pre , Post , m 0 ) and m a marking of S , S covers m if there exists a reachable marking m ′ of S such that m ′ is greater or equal to m i.e. ∃ m ′ ∈ RS ( S ) s.t. ∀ p ∈ P , m ′ ( p ) ≥ m ( p ) (1) Decidability studied in [2] and [1] Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 10 / 34

  20. Some Examples p 1 1 p 3 t 1 p 2 RS = { (2 , 1 , 0) , (1 , 0 , 1) } CS = { m | m ≤ (2 , 1 , 0) ∨ m ≤ (1 , 0 , 1) } Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 11 / 34

  21. Parametric Properties Given a class of problem P (coverability, reachability,...), SP a PPN and φ is an instance of P Definition ( P -Existence problem) ( E - P ): Is there a valuation ν ∈ N Par s.t. ν ( SP ) satisfies φ ? Definition ( P -Universality problem) ( U - P ): Does ν ( SP ) satisfies φ for each ν ∈ N Par ? Definition ( P -Synthesis problem) ( S - P ): Give all the valuation ν , s.t. ν ( SP ) satisfies φ . Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 12 / 34

  22. Existence ν 1 ( SP ) ν 1 ν 2 ( SP ) ν 2 classic models ν 3 parametric SP ν 3 ( SP ) model ... ν n ν n ( SP ) ... Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 13 / 34

  23. Existence ν 1 ( SP ) ν 1 ν 2 ( SP ) ν 2 classic models ν 3 parametric SP ν 3 ( SP ) ν 3 ( SP ) � φ model ... ν n ν n ( SP ) ... Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 13 / 34

  24. Existence ν 1 ( SP ) ν 1 ν 2 ( SP ) ν 2 classic models ν 3 parametric SP ν 3 ( SP ) ν 3 ( SP ) � φ model ... ν n SP � E φ ν n ( SP ) ... Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 13 / 34

  25. Universality ν 1 ( SP ) ν 1 ν 2 ( SP ) ν 2 classic models ν 3 parametric SP ν 3 ( SP ) model ... ν n ν n ( SP ) ... Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 14 / 34

  26. Universality ν 1 ( SP ) ν 1 ( SP ) � φ ν 1 ν 2 ( SP ) ν 2 ( SP ) � φ ν 2 classic models ν 3 parametric SP ν 3 ( SP ) ν 3 ( SP ) � φ model ... ν n ν n ( SP ) ν n ( SP ) � φ ... Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 14 / 34

  27. Universality ν 1 ( SP ) ν 1 ( SP ) � φ ν 1 ν 2 ( SP ) ν 2 ( SP ) � φ ν 2 classic models ν 3 parametric SP ν 3 ( SP ) ν 3 ( SP ) � φ model ... ν n SP � U φ ν n ( SP ) ν n ( SP ) � φ ... Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 14 / 34

  28. Mixing Properties and Parameters... ( U -cov) asks: ”Does each valuation of the parameters implies that the valuation of the PPN covers m ?” i.e. � ∀ ν ∈ N Par , ∃ m ′ ∈ RS ( ν ( SP )) m is U -coverable in SP ⇔ s.t. m ′ ≥ m (2) Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 15 / 34

  29. 1 Introducing Parameters 2 Undecidability of the General Case 3 Toward Decidable Subclasses 4 Conclusion Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 16 / 34

  30. Results Theorem (Undecidability of E -cov on PPN) The E -coverability problem for PPN is undecidable. Theorem (Undecidability of U -cov on PPN) The U -coverability problem for PPN is undecidable. Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 17 / 34

  31. 2-Counters Machine two counters c 1 , c 2 , states P = { p 0 , ... p m } , a terminal state labelled halt finite list of instructions l 1 , ..., l s among the following list: increment a counter decrement a counter check if a counter equals zero Counters are assumed positive. Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 18 / 34

  32. Example of 2-Counters Machine p 1 . C 0 := C 0 + 1; goto p 2 ; p 2 . C 1 := C 1 + 1; goto p 1 ; instructions sequence: ( p 1 , C 1 = 0 , C 2 = 0) → ( p 2 , C 1 = 1 , C 2 = 0) → ( p 1 , C 1 = 1 , C 2 = 1) → ( p 2 , C 1 = 2 , C 2 = 1) → ... Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 19 / 34

  33. Undecidability halting problem (whether state halt is reachable) is undecidable counters boundedness problem (whether the counters values stay in a finite set) is undecidable proved by Minksy [3] Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 20 / 34

  34. Why ? simulation of a counter machine E -cov can be reduced to halting problem U -cov can be reduced to counter boundedness Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 21 / 34

  35. Simulation of Instructions: m ( C 1) + m ( ¬ C 1) = λ π π π θ θ θ λ λ λ λ C 1 λ ¬ 0 0 ¬ C 1 C 1 ¬ C 1 C 1 ¬ C 1 C 1 + + C 1 − − p i λ p j p i p j p i p j error p k incrementation decrementation zero test of of a counter of a counter a counter Nicolas David, Claude Jard, Didier Lime, Olivier H. Roux Discrete Parameters in Petri Nets 22 / 34

Recommend


More recommend