discrete mathematics
play

Discrete Mathematics Graphs H. Turgut Uyar Ay seg ul Gen cata - PowerPoint PPT Presentation

Discrete Mathematics Graphs H. Turgut Uyar Ay seg ul Gen cata Yayml Emre Harmanc 2001-2016 License 2001-2016 T. Uyar, A. Yayml, E. Harmanc c You are free to: Share copy and redistribute the material in any


  1. Walk Example ( c , b ) ( b , a ) ( a , d ) − − − → b − − − → a − − − → d c ( d , e ) ( e , f ) ( f , a ) − − − → e − − − → f − − − → a ( a , b ) − − − → b c → b → a → d → e → f → a → b length: 7

  2. Trail trail: edges not repeated circuit: closed trail spanning trail: covers all edges

  3. Trail Example ( c , b ) ( b , a ) ( a , e ) − − − → b − − − → a − − − → e c ( e , d ) ( d , a ) ( a , f ) − − − → d − − − → a − − − → f c → a → e → d → a → f

  4. Path path: nodes not repeated cycle: closed path spanning path: visits all nodes

  5. Path Example ( c , b ) ( b , a ) ( a , d ) − − − → b − − − → a − − − → d c ( d , e ) ( e , f ) − − − → e − − − → f c → b → a → d → e → f

  6. Connected Graphs connected: a path between every pair of nodes a disconnected graph can be divided into connected components

  7. Connected Components Example disconnected: no path between a and c connected components: a , d , e b , c f

  8. Distance distance between v i and v j : length of shortest path between v i and v j diameter of graph: largest distance in graph

  9. Distance Example distance between a and e : 2 diameter: 3

  10. Cut-Points G − v : delete v and all its incident edges from G v is a cut-point for G : G is connected but G − v is not

  11. Cut-Point Example G G − d

  12. Directed Walks ignoring directions on arcs: semi-walk , semi-trail , semi-path if between every pair of nodes there is: a semi-path: weakly connected a path from one to the other: unilaterally connected a path: strongly connected

  13. Directed Graph Examples weakly unilaterally strongly

  14. Topics 1 Graphs Introduction Walks Traversable Graphs Planar Graphs 2 Graph Problems Connectivity Graph Coloring Shortest Path TSP Searching Graphs

  15. Bridges of K¨ onigsberg cross each bridge exactly once and return to the starting point

  16. Graphs

  17. Traversable Graphs G is traversable: G contains a spanning trail a node with an odd degree must be either the starting node or the ending node of the trail all nodes except the starting node and the ending node must have even degrees

  18. Bridges of K¨ onigsberg all nodes have odd degrees: not traversable

  19. Traversable Graph Example a , b , c : even d , e : odd start from d , end at e : d → b → a → c → e → d → c → b → e

  20. Euler Graphs Euler graph: contains closed spanning trail G is an Euler graph ⇔ all nodes in G have even degrees

  21. Euler Graph Examples not Euler Euler

  22. Hamilton Graphs Hamilton graph: contains a closed spanning path

  23. Hamilton Graph Examples Hamilton not Hamilton

  24. Topics 1 Graphs Introduction Walks Traversable Graphs Planar Graphs 2 Graph Problems Connectivity Graph Coloring Shortest Path TSP Searching Graphs

  25. Planar Graphs Definition G is planar: G can be drawn on a plane without intersecting its edges a map of G : a planar drawing of G

  26. Planar Graph Example

  27. Regions map divides plane into regions degree of region: length of closed trail that surrounds region Theorem d r i : degree of region r i � i d r i | E | = 2

  28. Regions map divides plane into regions degree of region: length of closed trail that surrounds region Theorem d r i : degree of region r i � i d r i | E | = 2

  29. Region Example d r 1 = 3 = 3 d r 2 d r 3 = 5 = 4 d r 4 d r 5 = 3 = 18 | E | = 9

  30. Euler’s Formula Theorem (Euler’s Formula) G = ( V , E ) : planar, connected graph R: set of regions in a map of G | V | − | E | + | R | = 2

  31. Euler’s Formula Example | V | = 6, | E | = 9, | R | = 5

  32. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 | E | ≤ 3 | V | − 6 Proof. sum of region degrees: 2 | E | degree of a region ≥ 3 ⇒ 2 | E | ≥ 3 | R | ⇒ | R | ≤ 2 3 | E | | V | − | E | + | R | = 2 ⇒ | V | − | E | + 2 3 | E | ≥ 2 ⇒ | V | − 1 3 | E | ≥ 2 ⇒ 3 | V | − | E | ≥ 6 ⇒ | E | ≤ 3 | V | − 6

  33. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 | E | ≤ 3 | V | − 6 Proof. sum of region degrees: 2 | E | degree of a region ≥ 3 ⇒ 2 | E | ≥ 3 | R | ⇒ | R | ≤ 2 3 | E | | V | − | E | + | R | = 2 ⇒ | V | − | E | + 2 3 | E | ≥ 2 ⇒ | V | − 1 3 | E | ≥ 2 ⇒ 3 | V | − | E | ≥ 6 ⇒ | E | ≤ 3 | V | − 6

  34. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 | E | ≤ 3 | V | − 6 Proof. sum of region degrees: 2 | E | degree of a region ≥ 3 ⇒ 2 | E | ≥ 3 | R | ⇒ | R | ≤ 2 3 | E | | V | − | E | + | R | = 2 ⇒ | V | − | E | + 2 3 | E | ≥ 2 ⇒ | V | − 1 3 | E | ≥ 2 ⇒ 3 | V | − | E | ≥ 6 ⇒ | E | ≤ 3 | V | − 6

  35. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 | E | ≤ 3 | V | − 6 Proof. sum of region degrees: 2 | E | degree of a region ≥ 3 ⇒ 2 | E | ≥ 3 | R | ⇒ | R | ≤ 2 3 | E | | V | − | E | + | R | = 2 ⇒ | V | − | E | + 2 3 | E | ≥ 2 ⇒ | V | − 1 3 | E | ≥ 2 ⇒ 3 | V | − | E | ≥ 6 ⇒ | E | ≤ 3 | V | − 6

  36. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 | E | ≤ 3 | V | − 6 Proof. sum of region degrees: 2 | E | degree of a region ≥ 3 ⇒ 2 | E | ≥ 3 | R | ⇒ | R | ≤ 2 3 | E | | V | − | E | + | R | = 2 ⇒ | V | − | E | + 2 3 | E | ≥ 2 ⇒ | V | − 1 3 | E | ≥ 2 ⇒ 3 | V | − | E | ≥ 6 ⇒ | E | ≤ 3 | V | − 6

  37. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 | E | ≤ 3 | V | − 6 Proof. sum of region degrees: 2 | E | degree of a region ≥ 3 ⇒ 2 | E | ≥ 3 | R | ⇒ | R | ≤ 2 3 | E | | V | − | E | + | R | = 2 ⇒ | V | − | E | + 2 3 | E | ≥ 2 ⇒ | V | − 1 3 | E | ≥ 2 ⇒ 3 | V | − | E | ≥ 6 ⇒ | E | ≤ 3 | V | − 6

  38. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 | E | ≤ 3 | V | − 6 Proof. sum of region degrees: 2 | E | degree of a region ≥ 3 ⇒ 2 | E | ≥ 3 | R | ⇒ | R | ≤ 2 3 | E | | V | − | E | + | R | = 2 ⇒ | V | − | E | + 2 3 | E | ≥ 2 ⇒ | V | − 1 3 | E | ≥ 2 ⇒ 3 | V | − | E | ≥ 6 ⇒ | E | ≤ 3 | V | − 6

  39. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 | E | ≤ 3 | V | − 6 Proof. sum of region degrees: 2 | E | degree of a region ≥ 3 ⇒ 2 | E | ≥ 3 | R | ⇒ | R | ≤ 2 3 | E | | V | − | E | + | R | = 2 ⇒ | V | − | E | + 2 3 | E | ≥ 2 ⇒ | V | − 1 3 | E | ≥ 2 ⇒ 3 | V | − | E | ≥ 6 ⇒ | E | ≤ 3 | V | − 6

  40. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 | E | ≤ 3 | V | − 6 Proof. sum of region degrees: 2 | E | degree of a region ≥ 3 ⇒ 2 | E | ≥ 3 | R | ⇒ | R | ≤ 2 3 | E | | V | − | E | + | R | = 2 ⇒ | V | − | E | + 2 3 | E | ≥ 2 ⇒ | V | − 1 3 | E | ≥ 2 ⇒ 3 | V | − | E | ≥ 6 ⇒ | E | ≤ 3 | V | − 6

  41. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 | E | ≤ 3 | V | − 6 Proof. sum of region degrees: 2 | E | degree of a region ≥ 3 ⇒ 2 | E | ≥ 3 | R | ⇒ | R | ≤ 2 3 | E | | V | − | E | + | R | = 2 ⇒ | V | − | E | + 2 3 | E | ≥ 2 ⇒ | V | − 1 3 | E | ≥ 2 ⇒ 3 | V | − | E | ≥ 6 ⇒ | E | ≤ 3 | V | − 6

  42. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 : ∃ v ∈ V [ d v ≤ 5] Proof. assume: ∀ v ∈ V [ d v ≥ 6] ⇒ 2 | E | ≥ 6 | V | ⇒ | E | ≥ 3 | V | ⇒ | E | > 3 | V | − 6

  43. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 : ∃ v ∈ V [ d v ≤ 5] Proof. assume: ∀ v ∈ V [ d v ≥ 6] ⇒ 2 | E | ≥ 6 | V | ⇒ | E | ≥ 3 | V | ⇒ | E | > 3 | V | − 6

  44. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 : ∃ v ∈ V [ d v ≤ 5] Proof. assume: ∀ v ∈ V [ d v ≥ 6] ⇒ 2 | E | ≥ 6 | V | ⇒ | E | ≥ 3 | V | ⇒ | E | > 3 | V | − 6

  45. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 : ∃ v ∈ V [ d v ≤ 5] Proof. assume: ∀ v ∈ V [ d v ≥ 6] ⇒ 2 | E | ≥ 6 | V | ⇒ | E | ≥ 3 | V | ⇒ | E | > 3 | V | − 6

  46. Planar Graph Theorems Theorem G = ( V , E ) : connected, planar graph where | V | ≥ 3 : ∃ v ∈ V [ d v ≤ 5] Proof. assume: ∀ v ∈ V [ d v ≥ 6] ⇒ 2 | E | ≥ 6 | V | ⇒ | E | ≥ 3 | V | ⇒ | E | > 3 | V | − 6

  47. Nonplanar Graphs Theorem K 5 is not planar. Proof. | V | = 5 3 | V | − 6 = 3 · 5 − 6 = 9 | E | ≤ 9 should hold but | E | = 10

  48. Nonplanar Graphs Theorem K 5 is not planar. Proof. | V | = 5 3 | V | − 6 = 3 · 5 − 6 = 9 | E | ≤ 9 should hold but | E | = 10

  49. Nonplanar Graphs Theorem K 5 is not planar. Proof. | V | = 5 3 | V | − 6 = 3 · 5 − 6 = 9 | E | ≤ 9 should hold but | E | = 10

  50. Nonplanar Graphs Theorem K 5 is not planar. Proof. | V | = 5 3 | V | − 6 = 3 · 5 − 6 = 9 | E | ≤ 9 should hold but | E | = 10

  51. Nonplanar Graphs Theorem K 5 is not planar. Proof. | V | = 5 3 | V | − 6 = 3 · 5 − 6 = 9 | E | ≤ 9 should hold but | E | = 10

  52. Nonplanar Graphs Theorem Proof. K 3 , 3 is not planar. | V | = 6 , | E | = 9 if planar then | R | = 5 degree of a region ≥ 4 ⇒ � r ∈ R d r ≥ 20 | E | ≥ 10 should hold but | E | = 9

  53. Nonplanar Graphs Theorem Proof. K 3 , 3 is not planar. | V | = 6 , | E | = 9 if planar then | R | = 5 degree of a region ≥ 4 ⇒ � r ∈ R d r ≥ 20 | E | ≥ 10 should hold but | E | = 9

  54. Nonplanar Graphs Theorem Proof. K 3 , 3 is not planar. | V | = 6 , | E | = 9 if planar then | R | = 5 degree of a region ≥ 4 ⇒ � r ∈ R d r ≥ 20 | E | ≥ 10 should hold but | E | = 9

  55. Nonplanar Graphs Theorem Proof. K 3 , 3 is not planar. | V | = 6 , | E | = 9 if planar then | R | = 5 degree of a region ≥ 4 ⇒ � r ∈ R d r ≥ 20 | E | ≥ 10 should hold but | E | = 9

Recommend


More recommend